Concept explainers
Consider the three connected objects shown in Figure P5.43. Assume first that the inclined plane is frictionless and that the system is in equilibrium. In terms of m, g, and θ, find (a) the mass M and (b) the tensions T1 and T2. Now assume that the value of M is double the value found in part (a). Find (c) the acceleration of each object and (d) the tensions T1 and T2. Next, assume that the coefficient of static friction between m and 2m and the inclined plane is μs and that the system is in equilibrium. Find (e) the maximum value of M and (f) the minimum value of M. (g) Compare the values of T2 when M has its minimum and maximum values.
Figure P5.43
(a)
The mass
Answer to Problem 43P
The mass
Explanation of Solution
The free body diagram of the mass
The free body diagram of the mass
The free body diagram of the mass
Apply Newton’s second law in the Figure1.
Here,
Apply Newton’s second law in the Figure 2.
Here,
Apply Newton’s second law in the Figure 3.
Assume that, the system is in equilibrium,
Use equation (I) and (III), in (II).
Conclusion:
Therefore, the mass
(b)
The tensions
Answer to Problem 43P
The tension
Explanation of Solution
From the part (a),
Use equation (IV) in (III), and substitute
Conclusion:
Therefore, the tensions
(c)
The acceleration of each object when the value of
Answer to Problem 43P
The acceleration of each object when the value of
Explanation of Solution
Assume that,
Substitute,
Use equation (I) and (V) in (VII), substitute,
Conclusion:
Therefore, the acceleration of each object when the value of
(d)
The tensions
Answer to Problem 43P
The tensions
Explanation of Solution
Use equation (VI) in (I), substitute,
Use equation (VI) in (III), and use
Conclusion:
Therefore, the tensions
(e)
The maximum value of
Answer to Problem 43P
The maximum value of
Explanation of Solution
At the equilibrium the acceleration is zero, and the frictional forces acting down the incline.
Use
Use
Rewrite the equation (III) for
Use equation (IX) and (X) in (XI).
Conclusion:
Therefore, the maximum value of
(f)
The minimum value of
Answer to Problem 43P
The minimum value of
Explanation of Solution
Rewrite the equation (III) for
At the equilibrium the acceleration is zero, and impending motion up the incline, so the frictional forces acting up the incline.
Use
Since the frictional forces acting up the incline.
Use
Since the frictional forces acting up the incline.
Use equation (XII) and (XIII) in (XIV).
Conclusion:
Therefore, the minimum value of
(g)
The value of
Answer to Problem 43P
The value of
Explanation of Solution
Subtract equation (XII) from (XI).
Use
Conclusion:
Therefore, the value of
Want to see more full solutions like this?
Chapter 5 Solutions
Principles of Physics: A Calculus-Based Text
- Two identical 15.0 kg balls, each 25.0 cm in diameter, are suspended by two 35.0 cm wires . The entire apparatus is supported by a single 18.0 cm wire, and the surfaces of the balls are perfectly smooth. (a) Find the tension in each of the three wires. (b) How hard does each ball push on the other one?arrow_forwardA cord passing over a pulley connects two masses, as shown, where m1 = 3.30 kg and m2 = 6.00 kg. The system accelerates with a magnitude of 1.01 m/s2. The coefficient of kinetic friction between the masses and the incline is the same for both masses. Assume the pulley is frictionless, and the cord is massless. Find the coefficient of kinetic friction. What is the Tension (N) in the cord?arrow_forwardYou find it takes 190 N of horizontal force to move an unloaded pickup truck along a level road at a speed of 2.4 m/s . You then load up the pickup and pump up its tires so that its total weight increases by 42%while the coefficient of rolling friction decreases by 19%. Now what horizontal force will you need to move the pickup along the same road at the same speed? The speed is low enough that you can ignore air resistance..arrow_forward
- A 12 N horizontal force pushes a block weighing 5.0 N against a vertical wall . The coefficient of static friction between the wall and the block is 0.60, and the coefficient of kinetic friction is 0.40. Assume that the block is not moving initially. (a) Will the block move? (b) In unit-vector notation, what is the force on the block from the wall?arrow_forwardA block with mass M is attached to the lower end of a vertical, uniform rope with mass m and length L. A constant upward force F is applied to the top of the rope, causing the rope and block to accelerate upward. Find the tension in the rope at a distance x from the top end of the rope, where x can have any value from 0 to L.arrow_forwardA block of mass 20kg is pushed against a vertical wall by force P. The coefficient of friction between the surface and the block is 0.2. If theta = 30 degrees, what is the minimum magnitude of P to hold the block still?I understand that in order for the block to sit motionless, the net forces acting on the block must be zero. I set my equation to be Net Force = 0 = Psin(theta) + Force Friction - Force Gravity.Which I rearranged as P = (Force Gravity - Force Friction)/sin(theta) or P = (mg-μ(mg))/sin(theta)Doing this gives me a value of 313.6N rather than 202.9N which I should be getting. What am I doing wrong?arrow_forward
- For the next three items: A 200 kg plank is projecting a distance L = 5.0 m from a wall which is held steadily by a string that is connected to it at an angle = 30° from the horizontal. The plank is actually fasted to the wall where an unknown force F is exerted on the plank by the wall. If a 60 kg mass is placed on the plank at a distance d = 1.0 m, find the tension force on the string. Ө d O 1300 N O 4200 N O 1600 N O2200 N L-arrow_forwardA sailor is being rescued using a boatswain's chair that is suspended from a pulley that can roll freely on the support cable ACB and is pulled at a constant speed by cable CD. Knowing that a 30° and B 10° and that the combined weight of the boatswain's chair and the sailor is 900 N, determine the tension (a) in the support cable ACB, (b) in the traction cable CD. B.arrow_forwardM1=4 kg and m2=7kg. The system accelerates with a magnitude of .89 m/s2. The coefficient of kinetic friction between the masses and the incline is .08. Assume the pulley is frictionless and the cord is massless. What is the tension (in N) in the cord?arrow_forward
- The distance between two telephone poles is d = 52.0 m. When a 0.850-kg bird lands on the telephone wire midway between the poles, the wire sags h = 0.205 m. (a) Draw a free-body diagram of the bird. (b) How much tension does the bird produce in the wire? Ignore the weight of the wire.arrow_forwardAt an airport, luggage is unloaded from a plane into the three cars of a luggage carrier, as the drawing shows. The acceleration of the carrier is 0.162 m/s², and friction is negligible. The coupling bars have negligible mass. If 30.9 kg of luggage were removed from car 2 and placed in car 1, by how much would the tension change in coupling bars (a) A, (b) B. and (c) C? If instead 30.9 kg of luggage were removed from car 2 and placed in car 3, by how much would the tension change in coupling bars (d) A, (e) B, and (f) C? In each case, give your answer as a positive number if the tension increases, and negative if it decreases. (a) Number (b) Number Coupling bar C Coupling bar B Coupling bar A Car 3 Car 2 Car Units Units (c) Number i Units (d) Number Units (e) Number Units (f) Number Unitsarrow_forwardTwo masses are connected by a rigid link as shown in Fig. Q3. The masses are resting on an inclined plane. The masses are then released. Considering the coefficient of kinetic friction between the inclined plane and the masses A and B are 0.1 and 0.2 respectively. 3. Compute by using Newton's second law a) The acceleration of both masses. b) The force in the rigid link and specify whether it is in tension or compression. 8kg В 4kg 25° Fig. Q3arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning