Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 57P
To determine
The tension in the wire.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A jet airplane is in level flight. The mass of the airplane is m
8970 kg. The airplane travels at a constant speed around a
9.77 mi and makes one revolution every T 0.129 h. Given that the lift force acts
circular path of radius R
perpendicularly upward from the plane defined by the wings, what is the magnitude of the lift force acting on the airplane?
R
L
kN
At what angle is the airplane banked?
x10
A person whirls a 0.250-kg stone in a 1.00-m-radius horizontal circle at the end of a string. The horizontal component of the force with which the person pulls on the string is 5.00 N. Write expressions for the projections of the displacement, velocity, and acceleration on a diameter of the circle.
The accompanying figure shows a frictionless channel in the shape of a segment of a circle with center at "O". The channel has been anchored to a frictionless horizontal table top. You are looking down at the table. Forces exerted by the air are negligible. A ball is shot at high speed into the channel at "p" and exits at "r."
Consider the following distinct forces:
A downward force of gravity.
A force exerted by the channel pointing from q to O.
A force in the direction of motion.
A force pointing from O to q.
Which of the forces is (are) acting on the ball when it is within the frictionless channel at position "q"?
1 only
1 and 2
1 and 3
1, 2, and 3
1, 3, and 4
Chapter 5 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 5.1 - You press your physics textbook flat against a...Ch. 5.1 - A crate is located in the center of a flatbed...Ch. 5.1 - You are playing with your daughter in the snow....Ch. 5.2 - You are riding on a Ferris wheel (Fig. 5.8) that...Ch. 5.3 - Which of the following is impossible for a car...Ch. 5.3 - A bead slides freely along a curved wire lying on...Ch. 5.4 - Consider a sky surfer falling through air, as in...Ch. 5 - The driver of a speeding empty truck slams on the...Ch. 5 - The manager of a department store is pushing...Ch. 5 - An object of mass m moves with acceleration a down...
Ch. 5 - An office door is given a sharp push and swings...Ch. 5 - Prob. 5OQCh. 5 - A pendulum consists of a small object called a bob...Ch. 5 - A door in a hospital has a pneumatic closer that...Ch. 5 - The driver of a speeding truck slams on the brakes...Ch. 5 - A child is practicing for a BMX race. His speed...Ch. 5 - A large crate of mass m is placed on the flatbed...Ch. 5 - Before takeoff on an airplane, an inquisitive...Ch. 5 - Prob. 12OQCh. 5 - As a raindrop falls through the atmosphere, its...Ch. 5 - An object of mass m is sliding with speed vi at...Ch. 5 - A car is moving forward slowly and is speeding up....Ch. 5 - Prob. 2CQCh. 5 - Prob. 3CQCh. 5 - Prob. 4CQCh. 5 - Prob. 5CQCh. 5 - Prob. 6CQCh. 5 - Prob. 7CQCh. 5 - Prob. 8CQCh. 5 - Prob. 9CQCh. 5 - Prob. 10CQCh. 5 - It has been suggested that rotating cylinders...Ch. 5 - Prob. 12CQCh. 5 - Why does a pilot tend to black out when pulling...Ch. 5 - Prob. 1PCh. 5 - Prob. 2PCh. 5 - Prob. 3PCh. 5 - Prob. 4PCh. 5 - Prob. 5PCh. 5 - The person in Figure P5.6 weighs 170 lb. As seen...Ch. 5 - A 9.00-kg hanging object is connected by a light,...Ch. 5 - Prob. 8PCh. 5 - A 3.00-kg block starts from rest at the top of a...Ch. 5 - Prob. 10PCh. 5 - Prob. 11PCh. 5 - A block of mass 3.00 kg is pushed up against a...Ch. 5 - Two blocks connected by a rope of negligible mass...Ch. 5 - Three objects are connected on a table as shown in...Ch. 5 - Why is the following situation impossible? Your...Ch. 5 - Prob. 16PCh. 5 - A light string can support a stationary hanging...Ch. 5 - Why is the following situation impossible? The...Ch. 5 - A crate of eggs is located in the middle of the...Ch. 5 - Prob. 20PCh. 5 - Prob. 21PCh. 5 - A roller coaster at the Six Flags Great America...Ch. 5 - Prob. 23PCh. 5 - Prob. 24PCh. 5 - Prob. 25PCh. 5 - A pail of water is rotated in a vertical circle of...Ch. 5 - Prob. 27PCh. 5 - A child of mass m swings in a swing supported by...Ch. 5 - Prob. 29PCh. 5 - (a) Estimate the terminal speed of a wooden sphere...Ch. 5 - Prob. 31PCh. 5 - Prob. 32PCh. 5 - Prob. 33PCh. 5 - A 9.00-kg object starting from rest falls through...Ch. 5 - Prob. 35PCh. 5 - Prob. 36PCh. 5 - Prob. 37PCh. 5 - Prob. 38PCh. 5 - Prob. 39PCh. 5 - Prob. 40PCh. 5 - Prob. 41PCh. 5 - Prob. 42PCh. 5 - Consider the three connected objects shown in...Ch. 5 - A car rounds a banked curve as discussed in...Ch. 5 - Prob. 45PCh. 5 - An aluminum block of mass m1 = 2.00 kg and a...Ch. 5 - Figure P5.47 shows a photo of a swing ride at an...Ch. 5 - Why is the following situation impossible? A...Ch. 5 - A space station, in the form of a wheel 120 m in...Ch. 5 - A 5.00-kg block is placed on top of a 10.0-kg...Ch. 5 - In Example 6.5, we investigated the forces a child...Ch. 5 - Prob. 52PCh. 5 - Prob. 53PCh. 5 - Prob. 54PCh. 5 - Prob. 55PCh. 5 - Prob. 56PCh. 5 - Prob. 57PCh. 5 - Why is the following situation impossible? A book...Ch. 5 - A single bead can slide with negligible friction...Ch. 5 - An amusement park ride consists of a large...Ch. 5 - Prob. 61PCh. 5 - Prob. 62PCh. 5 - Prob. 63PCh. 5 - If a single constant force acts on an object that...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A ball is on the end of a string. The ball is being swung in a vertical circle at a constant speed. The length of the string is 1.25 m. The mass of the ball is 2.10 kg. The maximum tension the string can withstand is 61.0 N. What is the max speed of the ball without breaking the string when the ball is at the top of the circle (point a)?arrow_forwardA jet airplane is in level flight. The mass of the airplane is m = 8850 kg. The airplane travels at a constant speed around a circular path of radius R = 9.55 mi and makes one revolution every T = 0.126 h. Given that the lift force acts perpendicularly upward from the plane defined by the wings, what is the magnitude of the lift force acting on the airplane? R L = kNarrow_forwardA small object of mass 0.500 kg is attached by a 0.840 m-long cord to a pin set into the surface of a frictionless table top. The object moves in a circle on the horizontal surface with a speed of 8.80 m/s. What is the tension in the cord?arrow_forward
- The accompanying figure shows a frictionless channel in the shape of a segment of a circle with center at "O". The channel has been anchored to a frictionless horizontal tabletop. You are looking down at the table. Forces exerted by the air are negligible. A ball is shot at high speed into the channel at "p" and exits at "r." Consider the following distinct forces: A downward force of gravity. A force exerted by the channel pointing from q to O. A force in the direction of motion. A force pointing from O to q. Which of the above forces is (are) acting on the ball when it is within the frictionless channel at position "q"?arrow_forwardWhen a plane flies in a circular curve, it's wings are tipped (see diagram) so that the lift force, which is extended perpendicularly to the bottom of the wings, has a component towards the center of the circle. If a plane is flying with a speed of 454 km/h and it's wings are titled 40 degrees to the horizontal. What is the radius of the circle in which the plane is flying?arrow_forwardA car moves in a horizontal circle on a test track with a radius of 125 m. The coefficient of static friction between the tires and the road is 0.52. Draw an FBD, and Calculate the maximum speed of the car.arrow_forward
- A 940 g rock is whirled in a horizontal circle at the end of a 1.5 m-long string. If the breaking strength of the string is 120 N , what is the maximum allowable speed of the rock? At this maximum speed, what angle does the string make with the horizontal?arrow_forwardNASA uses a plane often called the "vomit comet" to reproduce the effects of low gravity in space during astronaut training. The plane moves in circular arcs at a speed of v = 218 m/s.What is the radius the pilot must fly to create weightlessness as they go around the top of the circular arc? Give your answer in meters.arrow_forwardA jet airplane is in level flight. The mass of the airplane is ?=8830 kg. The airplane travels at a constant speed around a circular path of radius ?=9.33 mi and makes one revolution every ?=0.123 h. Given that the lift force acts perpendicularly upward from the plane defined by the wings, what is the magnitude of the lift force acting on the airplane?arrow_forward
- A curve in a road forms part of a horizontal circle. As a car goes around it at constant speed 14.0 m/s, the total horizontal force on the driver has magnitude 130 N. What is the total horizontal force on the driver if the speed on the same curve is 18.0 m/s instead?arrow_forwardThe drawing shows a baggage carousel at an airport. Your suitcase has not slid all the way down the slope and is going around at a constant speed on a circle ((r = 8.90 m) as the carousel turns. The coefficient of static friction between the suitcase and the carousel is 0.640, and the angle 0 in the drawing is 5.90°. How much time is required for your suitcase to go around once? Assumme that the static friction between the suitcase and the carousel is at its maximum.arrow_forwardThe drawing shows a baggage carousel at an airport. Your suitcase has not slid all the way down the slope and is going around at a constant speed on a circle ((r = 12.0 m) as the carousel turns. The coefficient of static friction between the suitcase and the carousel is 0.840, and the angle 0 in the drawing is 12.9°. How much time is required for your suitcase to go around once? Assumme that the static friction between the suitcase and the carousel is at its maximum. Number MO Unitsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY