Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 8CQ
To determine
The changing parameters to decrease the terminal speed of the parachute, after the parachute is opened.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two skydivers have parachuted with diameters A1=2.4 m^2 and A2=3.6 m^2. Skydiver 1 reached a terminal velocity of 12 m/s. If both skydivers have the same mass and the shape of the parachutes is the same, what is the terminal velocity of skydiver 2?
-8.0 m/s
-12 m/s
-9.8 m/s
-5.3 m/s
A fishnet consists of 1 mm diameter strings which form a pattern of 1 cm x 1 cm squares. Estimate
the drag to pull a square meter of net at 3 m/s normal to its plane. Treat each string as independent
from the others
926 N
O 1500 N
300 M
400 N
An early submersible craft for deep-sea exploration was raised and lowered by a cable from a ship. When the craft was stationary, the tension in the cable was 6500 N. When the craft was lowered or raised at a steady rate, the motion through the water added an 1800 N drag force.
What was the tension in the cable when the craft was being lowered to the seafloor?
Chapter 5 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 5.1 - You press your physics textbook flat against a...Ch. 5.1 - A crate is located in the center of a flatbed...Ch. 5.1 - You are playing with your daughter in the snow....Ch. 5.2 - You are riding on a Ferris wheel (Fig. 5.8) that...Ch. 5.3 - Which of the following is impossible for a car...Ch. 5.3 - A bead slides freely along a curved wire lying on...Ch. 5.4 - Consider a sky surfer falling through air, as in...Ch. 5 - The driver of a speeding empty truck slams on the...Ch. 5 - The manager of a department store is pushing...Ch. 5 - An object of mass m moves with acceleration a down...
Ch. 5 - An office door is given a sharp push and swings...Ch. 5 - Prob. 5OQCh. 5 - A pendulum consists of a small object called a bob...Ch. 5 - A door in a hospital has a pneumatic closer that...Ch. 5 - The driver of a speeding truck slams on the brakes...Ch. 5 - A child is practicing for a BMX race. His speed...Ch. 5 - A large crate of mass m is placed on the flatbed...Ch. 5 - Before takeoff on an airplane, an inquisitive...Ch. 5 - Prob. 12OQCh. 5 - As a raindrop falls through the atmosphere, its...Ch. 5 - An object of mass m is sliding with speed vi at...Ch. 5 - A car is moving forward slowly and is speeding up....Ch. 5 - Prob. 2CQCh. 5 - Prob. 3CQCh. 5 - Prob. 4CQCh. 5 - Prob. 5CQCh. 5 - Prob. 6CQCh. 5 - Prob. 7CQCh. 5 - Prob. 8CQCh. 5 - Prob. 9CQCh. 5 - Prob. 10CQCh. 5 - It has been suggested that rotating cylinders...Ch. 5 - Prob. 12CQCh. 5 - Why does a pilot tend to black out when pulling...Ch. 5 - Prob. 1PCh. 5 - Prob. 2PCh. 5 - Prob. 3PCh. 5 - Prob. 4PCh. 5 - Prob. 5PCh. 5 - The person in Figure P5.6 weighs 170 lb. As seen...Ch. 5 - A 9.00-kg hanging object is connected by a light,...Ch. 5 - Prob. 8PCh. 5 - A 3.00-kg block starts from rest at the top of a...Ch. 5 - Prob. 10PCh. 5 - Prob. 11PCh. 5 - A block of mass 3.00 kg is pushed up against a...Ch. 5 - Two blocks connected by a rope of negligible mass...Ch. 5 - Three objects are connected on a table as shown in...Ch. 5 - Why is the following situation impossible? Your...Ch. 5 - Prob. 16PCh. 5 - A light string can support a stationary hanging...Ch. 5 - Why is the following situation impossible? The...Ch. 5 - A crate of eggs is located in the middle of the...Ch. 5 - Prob. 20PCh. 5 - Prob. 21PCh. 5 - A roller coaster at the Six Flags Great America...Ch. 5 - Prob. 23PCh. 5 - Prob. 24PCh. 5 - Prob. 25PCh. 5 - A pail of water is rotated in a vertical circle of...Ch. 5 - Prob. 27PCh. 5 - A child of mass m swings in a swing supported by...Ch. 5 - Prob. 29PCh. 5 - (a) Estimate the terminal speed of a wooden sphere...Ch. 5 - Prob. 31PCh. 5 - Prob. 32PCh. 5 - Prob. 33PCh. 5 - A 9.00-kg object starting from rest falls through...Ch. 5 - Prob. 35PCh. 5 - Prob. 36PCh. 5 - Prob. 37PCh. 5 - Prob. 38PCh. 5 - Prob. 39PCh. 5 - Prob. 40PCh. 5 - Prob. 41PCh. 5 - Prob. 42PCh. 5 - Consider the three connected objects shown in...Ch. 5 - A car rounds a banked curve as discussed in...Ch. 5 - Prob. 45PCh. 5 - An aluminum block of mass m1 = 2.00 kg and a...Ch. 5 - Figure P5.47 shows a photo of a swing ride at an...Ch. 5 - Why is the following situation impossible? A...Ch. 5 - A space station, in the form of a wheel 120 m in...Ch. 5 - A 5.00-kg block is placed on top of a 10.0-kg...Ch. 5 - In Example 6.5, we investigated the forces a child...Ch. 5 - Prob. 52PCh. 5 - Prob. 53PCh. 5 - Prob. 54PCh. 5 - Prob. 55PCh. 5 - Prob. 56PCh. 5 - Prob. 57PCh. 5 - Why is the following situation impossible? A book...Ch. 5 - A single bead can slide with negligible friction...Ch. 5 - An amusement park ride consists of a large...Ch. 5 - Prob. 61PCh. 5 - Prob. 62PCh. 5 - Prob. 63PCh. 5 - If a single constant force acts on an object that...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- . a. Consider two parachutists, a heavy person and a light person, who jump from the same altitude with parachutes of the same size. Which person reaches terminal speed first? Which person has the greater terminal speed? Which person reach the ground first? If there were no air resistance, as on the moon, how would your answers to these questions differ?arrow_forwardMany birds can attain very high speeds when diving. Using radar, scientists measured the altitude of a barn swallow in a vertical dive; it dropped 208 m in 3.0 s. The mass of the swallow was estimated to be 0.018 kg, and its cross-section area as 5.6 x 10-4 m2. What was the drag coefficient for this swallow as it dove?arrow_forward7. Two blocks are positioned on surfaces, each inclined at the same angle of 49.4 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 4.90 kg, and the coefficient of kinetic friction for both blocks and inclines is 0.510. Assume static friction has been overcome and that everything can slide. What is must be the mass of the white block if both blocks are to slide to the LEFT at a constant velocity? 8.Two blocks are positioned on surfaces, each inclined at the same angle of 48.7 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 7.68 kg, and the coefficient of kinetic friction for both blocks and inclines is 0.460. Assume static friction has been overcome and that…arrow_forward
- A 4.00 kg box sits atop a 10.0 kg box on a horizontal table. The coefficient of kinetic friction between the two boxes and the lower box and table is 0.600, while the coefficient of static frction between these same surfaces is 0.800. A horizontal pull of 150.0 N to the right is exerted on the lower box, and the boxes move together. What is the friction force on the upper box?arrow_forward(a) A sphere made of rubber has a density of 0.940 g/cm³ and a radius of 8.00 cm. It falls through air of density 1.20 kg/m³ and has a drag coefficient of 0.500. What is its terminal speed (in m/s)? m/s (b) From what height (in m) would the sphere have to be dropped to reach this speed if it fell without air resistance? Need Help? m Read Itarrow_forwardIt is autumn. You look outside a window and see a maple leaf falling face down, in a straight vertical line. You estimate the speed of the leaf to be 25.77 cm/s. You then pick up the leaf and do measurements. It has a mass of 2.76 g and a cross sectional area of 76 square cm. You measure the density of air to be 1.298 kg m-³. What is the drag coefficient between the leaf and the air? (numerical value only) Number (Hint: For an object to fall with constant speed, it must be at 'terminal velocity'.)arrow_forward
- 9. Two blocks are positioned on surfaces, each inclined at the same angle of 58.3 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 3.66 kg, and the coefficient of kinetic friction for both blocks and inclines is 0.460. Assume static friction has been overcome and that everything can slide. What is must be the mass of the white block if both blocks are to slide to the LEFT at an acceleration of 1.5 m/s^2? 2.16 kg 9.99 kg 6.02 kg 3.06 kgarrow_forwardA 560 g squirrel with a surface area of 930 cm2 falls from a 5.0 m tree to the ground. Calculate the terminal velocity using the drag coefficient for a horizontal skydiver. Group of answer choices 9.7 m/s 9.8 m/s 9.9 m/s 10 m/sarrow_forward9. Two blocks are positioned on surfaces, each inclined at the same angle degrees of 57.9 with respect to the horizontal. The blocks are connected by a rope that rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 4.32 kg, and the coefficient of friction for both blocks and inclines is 0.570 Assume static friction has been overcome and that everything can slide. What is must be the mass of the white block if both blocks are to slide to the LEFT at an acceleration of 1.5 m/s^2? a. 8.21 kg b. 3.06 kg c. 2.82 kg d. 14.38 kgarrow_forward
- Physics The lock down has made mellisa soft. She gets caught the last time she tries to steal a box of red vines, so mallisa decides she needs to start working out. Since gyms are so expensive, mallisa decides to practice pushing a 100 kg box filled with chemistry textbooks place of red vines) across her living room and back, a distance of 30 m. If mellisa pushes with a force of 875 N at an angle 25 degrees below the horizontal, what was the amount of work that mellisa performed on the box? a)-23.800J b) -13,600J c)31,200J d) 23,800Jarrow_forwardEstimate the speed at which the drag on a 150-g steel ball becomes equal to about 1% of its weight. (The density of steel is about 7900 kg/m3, and C for a sphere is about equal to 0.5.) Take the density of air to be 1.2 kg/m3. The speed is m/s. 34. A space probe near the earth has values of E, L, and m such that L/m = 7.5 × 1010 m2/s and 2E/m = 0. Find the eccentricity of this orbit and the radius of the closest point of the orbit to the earth, and classify the orbit as elliptical, parabolic, or hyperbolic. The eccentricity of the orbit is______ and the orbit is ______Choose one (.Elliptical, Parabolic, Hyperbolic) The radius of the closest point of the orbit to the earth is _______ km.arrow_forward(a) A sphere made of rubber has a density of 1.04 g/cm3 and a radius of 9.00 cm. It falls through air of density 1.20 kg/m3 and has a drag coefficient of 0.500. What is its terminal speed (in m/s)? m/s (b) From what height (in m) would the sphere have to be dropped to reach this speed if it fell without air resistance? m Need Help? Read It O Type here to search 5:58 PM 11/7/2020 DELLarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY