Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 64P
If a single constant force acts on an object that moves on a straight line, the object’s velocity is a linear function of time. The equation v = vi + at gives its velocity v as a function of time, where a is its constant acceleration. What if velocity is instead a linear function of position? Assume that as a particular object moves through a resistive medium, its speed decreases as described by the equation v = vi – kx, where k is a constant coefficient and x is the position of the object. Find the law describing the total force acting on this object.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A man pushes an object to the right and exerts a force which has a horizontal compotent of F = 33 N. A horizontal frictional force has a magnitude of f = 15 N which opposed the horizontal component of the fushing force. The mass of the object is m = 31 kg.
Write an expression for the magnitude of the acceleration of the object.
If the object starts at rest what is the speed in meters per second at t = 2.00s?
If the man stops pushing the object at t = 2.00s and the firctional force is constant what is the distance in meters does to object slide before coming to a rest?
The block has mass m = 6.8 kg, the ramp is at an angle of θ = 28 degrees, the coefficient of kinetic friction between the block and the ramp is μk = 0.25, and the applied force is F = 156.4 N.
What is the acceleration of the block up the ramp, in m/s2?
A boxer's fist and glove have a mass of m = 1.04 kg. The boxer's fist can obtain a speed of v = 9.25 m/s in a time of t = 0.21 s.
Write a symbolic expression for the magnitude of the average acceleration, aave, of the boxer's fist, in terms of the variables provided.
Find the magnitude of the average acceleration, aave, in meters per square second.
Write an expression for the magnitude of the average net force, Fb, that the boxer must apply to his fist to achieve the given velocity. (Write the expression in terms of m, v and t.)
What is the numerical value of Fb, in newtons?
Chapter 5 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 5.1 - You press your physics textbook flat against a...Ch. 5.1 - A crate is located in the center of a flatbed...Ch. 5.1 - You are playing with your daughter in the snow....Ch. 5.2 - You are riding on a Ferris wheel (Fig. 5.8) that...Ch. 5.3 - Which of the following is impossible for a car...Ch. 5.3 - A bead slides freely along a curved wire lying on...Ch. 5.4 - Consider a sky surfer falling through air, as in...Ch. 5 - The driver of a speeding empty truck slams on the...Ch. 5 - The manager of a department store is pushing...Ch. 5 - An object of mass m moves with acceleration a down...
Ch. 5 - An office door is given a sharp push and swings...Ch. 5 - Prob. 5OQCh. 5 - A pendulum consists of a small object called a bob...Ch. 5 - A door in a hospital has a pneumatic closer that...Ch. 5 - The driver of a speeding truck slams on the brakes...Ch. 5 - A child is practicing for a BMX race. His speed...Ch. 5 - A large crate of mass m is placed on the flatbed...Ch. 5 - Before takeoff on an airplane, an inquisitive...Ch. 5 - Prob. 12OQCh. 5 - As a raindrop falls through the atmosphere, its...Ch. 5 - An object of mass m is sliding with speed vi at...Ch. 5 - A car is moving forward slowly and is speeding up....Ch. 5 - Prob. 2CQCh. 5 - Prob. 3CQCh. 5 - Prob. 4CQCh. 5 - Prob. 5CQCh. 5 - Prob. 6CQCh. 5 - Prob. 7CQCh. 5 - Prob. 8CQCh. 5 - Prob. 9CQCh. 5 - Prob. 10CQCh. 5 - It has been suggested that rotating cylinders...Ch. 5 - Prob. 12CQCh. 5 - Why does a pilot tend to black out when pulling...Ch. 5 - Prob. 1PCh. 5 - Prob. 2PCh. 5 - Prob. 3PCh. 5 - Prob. 4PCh. 5 - Prob. 5PCh. 5 - The person in Figure P5.6 weighs 170 lb. As seen...Ch. 5 - A 9.00-kg hanging object is connected by a light,...Ch. 5 - Prob. 8PCh. 5 - A 3.00-kg block starts from rest at the top of a...Ch. 5 - Prob. 10PCh. 5 - Prob. 11PCh. 5 - A block of mass 3.00 kg is pushed up against a...Ch. 5 - Two blocks connected by a rope of negligible mass...Ch. 5 - Three objects are connected on a table as shown in...Ch. 5 - Why is the following situation impossible? Your...Ch. 5 - Prob. 16PCh. 5 - A light string can support a stationary hanging...Ch. 5 - Why is the following situation impossible? The...Ch. 5 - A crate of eggs is located in the middle of the...Ch. 5 - Prob. 20PCh. 5 - Prob. 21PCh. 5 - A roller coaster at the Six Flags Great America...Ch. 5 - Prob. 23PCh. 5 - Prob. 24PCh. 5 - Prob. 25PCh. 5 - A pail of water is rotated in a vertical circle of...Ch. 5 - Prob. 27PCh. 5 - A child of mass m swings in a swing supported by...Ch. 5 - Prob. 29PCh. 5 - (a) Estimate the terminal speed of a wooden sphere...Ch. 5 - Prob. 31PCh. 5 - Prob. 32PCh. 5 - Prob. 33PCh. 5 - A 9.00-kg object starting from rest falls through...Ch. 5 - Prob. 35PCh. 5 - Prob. 36PCh. 5 - Prob. 37PCh. 5 - Prob. 38PCh. 5 - Prob. 39PCh. 5 - Prob. 40PCh. 5 - Prob. 41PCh. 5 - Prob. 42PCh. 5 - Consider the three connected objects shown in...Ch. 5 - A car rounds a banked curve as discussed in...Ch. 5 - Prob. 45PCh. 5 - An aluminum block of mass m1 = 2.00 kg and a...Ch. 5 - Figure P5.47 shows a photo of a swing ride at an...Ch. 5 - Why is the following situation impossible? A...Ch. 5 - A space station, in the form of a wheel 120 m in...Ch. 5 - A 5.00-kg block is placed on top of a 10.0-kg...Ch. 5 - In Example 6.5, we investigated the forces a child...Ch. 5 - Prob. 52PCh. 5 - Prob. 53PCh. 5 - Prob. 54PCh. 5 - Prob. 55PCh. 5 - Prob. 56PCh. 5 - Prob. 57PCh. 5 - Why is the following situation impossible? A book...Ch. 5 - A single bead can slide with negligible friction...Ch. 5 - An amusement park ride consists of a large...Ch. 5 - Prob. 61PCh. 5 - Prob. 62PCh. 5 - Prob. 63PCh. 5 - If a single constant force acts on an object that...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- PROBLEM: A ball with mass 0.15 kg is thrown upward with initial velocity velocity 20 m/s from the roof of a building 30 m high. Neglect air resistance. Assume that the conditions are the same as the above except that there is a force due to air resistance of magnitude |v| / 30 directed opposite to the velocity, where the velocity v is measured in m/s. a. Find the maximum height above the ground that the ball reaches. b. Find the time that the ball hits the ground. c. Plot the graphs of velocity and position versus time. *** If possible, please solve for part b using the graphing calculator? Thank you.arrow_forwardWhen a car is moving at x miles per hour and the driver decides to slam on the brakes, the car will travel x + 1/20 x2 feet. (The general formula is f (x) = ax + bx2, where the constant a depends on the driver’s reaction time and theconstant b depends on the weight of the car and the type of tires.) If a car travels 175 feet after the driver decides to stop, how fast was the car moving? (Source: Applying Mathematics: A Course in Mathematical Modelling.)arrow_forwardA ball of relatively low density is thrown upwards. Because of air resistance the acceleration while traveling upwards is −10.8 m/s2. On its trip downward the resistance is in the opposite direction, and the resulting acceleration is −8.8 m/s2. When the ball reaches the level from which it was thrown, how does its speed compare to that with which it was thrown?arrow_forward
- A particle of mass 1.0 kg is subjected to a force Fiz = -3.0N and a second force of F2 = 14.0N.Calculate the magnitude of the acceleration, in m/s, of the particle. Use two significant digits please.arrow_forwardAutomotive engineers refer to the time rate of change of acceleration as the “jerk”. Assume an object moves in one dimension such that its jerk J is constant. (a) Determine expressions for its acceleration ax(t), velocity vx(t), and position x(t), given that its initial acceleration, velocity, and position are axi, vxi and xi, respectively. (b) Show that ax2 = axi2+ 2J (vx – vxi)arrow_forwardProblem 2: A 165 lb skydiver jumps off from a plane at a height 10,000 ft. In the first 30 seconds, the drag force due to air resistance is 2v. Use g = 32 ft/s'. (A) What is the differential equation (as an explicit derivative) that describes the motion of the skydiver? (B) what is the velocity of the skydiver after the first 10 seconds? (C) What is his altitude at that instant of time? After the first 30 seconds, the parachute is released to increase the drag force. If this time, the drag force is proportional to the square of the velocity, (D) find an expression for the velocity at any time t after the initial 30 seconds, assuming the same value of k. It's alright if your answer is in implicit form.arrow_forward
- A ball with mass 0.15 kg is thrown upward with initial velocity 20 m/s from the roof of a building 30 m high. There is a force due to air resistance of v2/1325 , where the velocity v is measured in m/s. (a) Find the maximum height above the ground that the ball reaches. (b) Find the time that the ball hits the ground. Step by step solution please.arrow_forwardYou drop an object of mass m from a tall building. Suppose the only forces affecting its motion are gravity, and air resistance proportional to the object's speed with positive constant of proportionality k. Let g denote gravitational acceleration (a positive constant). Express the total force in terms of m, g, and the object's velocity v, where upward displacement is considered positive. F = mg - kv Newton's second law tells us that force is equal to mass x acceleration, F = ma. Relating acceleration to velocity, rewrite the equation for total force above as a first order differential equation for v as a function of t. Denote v' as dv dt v(t) m(- dr) this is not an equation. Solve this differential equation for v(t) with the initial condition v(0) = V0. = mg (1-e ==) m k Find the terminal Terminal velocity = mg k X velocity. X syntax error: X Xarrow_forwardProblem 4arrow_forward
- An object of mass 5 kg is given an initial downward velocity of 50 m/sec and then allowed to fall under the influence of gravity. Assume that the force in newtons due to air resistance is -20v, where v is the velocity of the object in m/sec. Determine the equation of motion of the object. If the object is initially 600 m above the ground, determine when the object will strike the ground. Assume that the acceleration due to gravity is 9.81 m/sec and let x(t) represent the distance the object has fallen in t seconds. Determine the equation of motion of the object. x(t) = (Use integers or decimals for any numbers in the expression. Round to two decimal places as needed.)arrow_forwardUse the definition of the derivative to find an expression for the instantaneous acceleration of an object moving with rectilinear motion according to the given function. The instantaneous acceleration of an object is defined as the instantaneous rate of change of the velocity with respect to time. Here, vv is the velocity and tt is the time. v=9t2−6t+5.arrow_forwardThe head injury criterion (HIC) is used to assess the likelihood of head injuries arising from various types of collisions; an HIC greater than about 1000 s is likely to result in severe injuries or even death. The criterion can be written as HIC = (aavg/g)2.5Δt, where aavg is the average acceleration during the time Δt that the head is being accelerated, and g is the free-fall acceleration. Shown is a simplified graph of the net force on a crash dummy’s 4.5 kg head as it hits the airbag during a automobile collision. What is the HIC in this collision?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY