Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 5, Problem 5P
(a)
To determine
The minimum time in which a person starting from rest can move
(b)
To determine
The minimum time in which a person starting from rest can move
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
To meet a U.S. Postal Service requirement, employees’ footwear must have a coefficient of static friction of 0.500 or more on a specified tile surface. A typical athletic shoe has a coefficient of 0. 800. In an emergency, what is the minimum time interval in which a person starting from rest can move 3.00 m on the tile surface if she is wearing (a) footwear meeting the Postal Service minimum and (b) a typical athletic shoe?
A person pushes horizontally with a force of 170. N on a 52.0 kg crate to move it across a level floor. The coefficient of kinetic friction is
0.27. (a) What is the magnitude of the frictional force? (b) What is the magnitude of the crate's acceleration?
(a) Number
i
Units
(b) Number
i
Units
A sports car is accelerating up a hill that rises 18° above the horizontal. The coefficient of static friction between the wheels and the road is μs = 0.88. It is the static frictional force that propels the car forward.
(a) What is the magnitude of the maximum acceleration that the car can have?
(b) What is the magnitude of the maximum acceleration if the car is being driven down the hill?
Chapter 5 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 5.1 - You press your physics textbook flat against a...Ch. 5.1 - A crate is located in the center of a flatbed...Ch. 5.1 - You are playing with your daughter in the snow....Ch. 5.2 - You are riding on a Ferris wheel (Fig. 5.8) that...Ch. 5.3 - Which of the following is impossible for a car...Ch. 5.3 - A bead slides freely along a curved wire lying on...Ch. 5.4 - Consider a sky surfer falling through air, as in...Ch. 5 - The driver of a speeding empty truck slams on the...Ch. 5 - The manager of a department store is pushing...Ch. 5 - An object of mass m moves with acceleration a down...
Ch. 5 - An office door is given a sharp push and swings...Ch. 5 - Prob. 5OQCh. 5 - A pendulum consists of a small object called a bob...Ch. 5 - A door in a hospital has a pneumatic closer that...Ch. 5 - The driver of a speeding truck slams on the brakes...Ch. 5 - A child is practicing for a BMX race. His speed...Ch. 5 - A large crate of mass m is placed on the flatbed...Ch. 5 - Before takeoff on an airplane, an inquisitive...Ch. 5 - Prob. 12OQCh. 5 - As a raindrop falls through the atmosphere, its...Ch. 5 - An object of mass m is sliding with speed vi at...Ch. 5 - A car is moving forward slowly and is speeding up....Ch. 5 - Prob. 2CQCh. 5 - Prob. 3CQCh. 5 - Prob. 4CQCh. 5 - Prob. 5CQCh. 5 - Prob. 6CQCh. 5 - Prob. 7CQCh. 5 - Prob. 8CQCh. 5 - Prob. 9CQCh. 5 - Prob. 10CQCh. 5 - It has been suggested that rotating cylinders...Ch. 5 - Prob. 12CQCh. 5 - Why does a pilot tend to black out when pulling...Ch. 5 - Prob. 1PCh. 5 - Prob. 2PCh. 5 - Prob. 3PCh. 5 - Prob. 4PCh. 5 - Prob. 5PCh. 5 - The person in Figure P5.6 weighs 170 lb. As seen...Ch. 5 - A 9.00-kg hanging object is connected by a light,...Ch. 5 - Prob. 8PCh. 5 - A 3.00-kg block starts from rest at the top of a...Ch. 5 - Prob. 10PCh. 5 - Prob. 11PCh. 5 - A block of mass 3.00 kg is pushed up against a...Ch. 5 - Two blocks connected by a rope of negligible mass...Ch. 5 - Three objects are connected on a table as shown in...Ch. 5 - Why is the following situation impossible? Your...Ch. 5 - Prob. 16PCh. 5 - A light string can support a stationary hanging...Ch. 5 - Why is the following situation impossible? The...Ch. 5 - A crate of eggs is located in the middle of the...Ch. 5 - Prob. 20PCh. 5 - Prob. 21PCh. 5 - A roller coaster at the Six Flags Great America...Ch. 5 - Prob. 23PCh. 5 - Prob. 24PCh. 5 - Prob. 25PCh. 5 - A pail of water is rotated in a vertical circle of...Ch. 5 - Prob. 27PCh. 5 - A child of mass m swings in a swing supported by...Ch. 5 - Prob. 29PCh. 5 - (a) Estimate the terminal speed of a wooden sphere...Ch. 5 - Prob. 31PCh. 5 - Prob. 32PCh. 5 - Prob. 33PCh. 5 - A 9.00-kg object starting from rest falls through...Ch. 5 - Prob. 35PCh. 5 - Prob. 36PCh. 5 - Prob. 37PCh. 5 - Prob. 38PCh. 5 - Prob. 39PCh. 5 - Prob. 40PCh. 5 - Prob. 41PCh. 5 - Prob. 42PCh. 5 - Consider the three connected objects shown in...Ch. 5 - A car rounds a banked curve as discussed in...Ch. 5 - Prob. 45PCh. 5 - An aluminum block of mass m1 = 2.00 kg and a...Ch. 5 - Figure P5.47 shows a photo of a swing ride at an...Ch. 5 - Why is the following situation impossible? A...Ch. 5 - A space station, in the form of a wheel 120 m in...Ch. 5 - A 5.00-kg block is placed on top of a 10.0-kg...Ch. 5 - In Example 6.5, we investigated the forces a child...Ch. 5 - Prob. 52PCh. 5 - Prob. 53PCh. 5 - Prob. 54PCh. 5 - Prob. 55PCh. 5 - Prob. 56PCh. 5 - Prob. 57PCh. 5 - Why is the following situation impossible? A book...Ch. 5 - A single bead can slide with negligible friction...Ch. 5 - An amusement park ride consists of a large...Ch. 5 - Prob. 61PCh. 5 - Prob. 62PCh. 5 - Prob. 63PCh. 5 - If a single constant force acts on an object that...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A Smart Fortwo® car has a mass of 730 kg, which we assume on a flat surface is evenly distributed over its four tires. What is the maximum value of static friction on one tire if the coefficient of static friction between the tire and the road is 0.85? Note: In Iceland, though Smart cars are popular, there are special warnings about where to park them because the local winds can be strong enough to move the cars if they are not sheltered.arrow_forwardA 100 kg block is at rest on a flat floor with a coefficient of static friction 0.62. A horizontal force of 3.7 N is applied to the block, but it does not budge. What is the magnitude of the frictional force on the block applied?arrow_forwardQuestion 1.A man is pulling two boxes, one on top of the other, up the ramp shown by pulling on a ropeparallel to the surface of the ramp. The coefficient of kinetic friction between the ramp and thelower box is 0.444, and the coefficient of static friction between the two boxes is 0.800. What is the magnitude of the maximum acceleration the man can pull the boxes up the ramp without having the top box slip off the bottom box?arrow_forward
- Suppose a 25.0 kg block rests on a horizontal plane, and the static friction coefficient between the surfaces is 0.220. (a) What is the maximum allowable static frictional force that could act on the block? (b) What is the actual static frictional force acting on the block if a 25.0 N external force acts horizontally? Assume g = 9.80 m/s2.arrow_forwardA 235 N crate rests on a ramp; the maximum angle just before it slips is 27.8° with the horizontal. What is the coefficient of static friction between crate and ramp surfaces? Answer:arrow_forwardA 3 kg box rests on a horizontal table. It is attached to a 2 kg box via a pulley. The 2 kg box hangs over the edge of the table. The 2 kg box is 2 meters from the ground. a) What is the minimum coefficient of static friction such that the objects remain at rest. b) If the coefficient of static friction is less than that in part (a) and the coefficient of kinetic friction between the box and the table is 0.30, find the time the 2 kg mass falls the 2 meters to the floor. Assume the system starts from rest.arrow_forward
- (a) A flatbed truck moving at 28 m/s carries a steel girder that rests on its wooden floor. The girder is not strapped down, in violation with USDOT regulations. If the coefficient of static friction between steel and wood is 0.52, what is the minimum distance over which the truck can come to a stop without the girder sliding toward the cab of the truck? (answer: 77 m) (b) What is the minimum time over which the truck can accelerate forward from 0 m/s to 28 m/s with a constant acceleration without the girder sliding off the back? (answer: 5.5 s) FNET = ma fs.max = μsn W = mg v² = v₁² + 2aAx V = Vo+ at g=9.81 m/s²arrow_forwardA sled is held on an inclined plane by a cord pulling directly up the plane. The sled is to be on the verge of moving up the plane. The magnitude F required of the cord's force on the sled is plotted versus a range of values for the coefficient of static friction between sled and plane. The values are below: F1 = 2.0 N, F2 = 5.0 N for a coefficient of static friction is 0.25. At what angle (in degrees) is the plane inclined? F F -Hsarrow_forwardA woman exerts a horizontal force of 139 N on a crate with a mass of 38.7 kg. (a)If the crate doesn't move, what's the magnitude of the static friction force (in N)?N(b)What is the minimum possible value of the coefficient of static friction between the crate and the floor? (Assume the crate remains stationary.)arrow_forward
- A box of banana weighing 40.0 N rests on a horizontal surface. The coefficient of static friction between the box and the surface is 0.40, and the coefficient of kinetic friction is 0.20. (a) If no horizontal force is applied to the box and the box is at rest, how large is the friction force exerted on the box? (b) What is the magnitude of the friction force if a monkey applies a horizontal force of 6.0 N to the box and the box is initially at rest? (c) What minimum horizontal force must the monkey apply to start the box in motion? (d) What minimum horizontal force must the monkey apply to keep the box moving at constant velocity once it has been started? (e) if the monkey applies a horizontal force of 18.0 N, what is the magnitude of the friction force and what is the box's acceleration?arrow_forwardA flatbed truck moving at 28 m/s carries a steel girder that rests on its wooden floor. The girder is not strapped down, in violation with USDOT regulations. If the coefficient of static friction between steel and wood is 0.52, what is the minimum distance over which the truck can come to a stop without the girder sliding toward the cab of the truck? (answer: 77 m) (b) What is the minimum time over which the truck can accelerate forward from 0 m/s to 28 m/s with a constant acceleration without the girder sliding off the back? (answer: 5.5 s) FNET = ma fs,max = sN W = mg v2 = v02 + 2ax g = 9.81 m/s2arrow_forwardA person pushes horizontally with a force of 220 N on a 55 kg crate to move it across a level floor. The coefficient of kinetic friction between the crate and the floor is 0.35.What is the magnitude of (a) the frictional force and (b) the acceleration of the crate?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Drawing Free-Body Diagrams With Examples; Author: The Physics Classroom;https://www.youtube.com/watch?v=3rZR7FSSidc;License: Standard Youtube License