Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 3P
(a)
To determine
The coefficient of static friction.
(b)
To determine
The coefficient of kinetic friction between the block and surface.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 25.0kg block is initially at rest on a horizontal surface. A horizontal force of 75.0N is required to set the block in motion, after which a horizontal force of 60.0N is required to keep the block moving with constant speed. Find (a) the coefficient of static friction and (b) the coefficient of kinetic friction between the block and the surface.
A 12 N horizontal force pushes a block weighing 5.0 N against a vertical wall . The coefficient of static friction between the wall and the block is 0.60, and the coefficient of kinetic friction is 0.40. Assume that the block is not moving initially. (a) Will the block move? (b) In unit-vector notation, what is the force on the block from the wall?
A 2.60 kg block is initially at rest on a horizontal surface. A horizontal force F of magnitude 7.29 N and a vertical force P are then
applied to the block (see the figure). The coefficients of friction for the block and surface are us = 0.4 and Pk = 0.25. Determine the
magnitude of the frictional force acting on the block if the magnitude of P is (a)6.00 N and (b)8.00 N. (The upward pull is insufficient
to move the block vertically.)
(a) Number
Units
(b) Number
Units
Chapter 5 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 5.1 - You press your physics textbook flat against a...Ch. 5.1 - A crate is located in the center of a flatbed...Ch. 5.1 - You are playing with your daughter in the snow....Ch. 5.2 - You are riding on a Ferris wheel (Fig. 5.8) that...Ch. 5.3 - Which of the following is impossible for a car...Ch. 5.3 - A bead slides freely along a curved wire lying on...Ch. 5.4 - Consider a sky surfer falling through air, as in...Ch. 5 - The driver of a speeding empty truck slams on the...Ch. 5 - The manager of a department store is pushing...Ch. 5 - An object of mass m moves with acceleration a down...
Ch. 5 - An office door is given a sharp push and swings...Ch. 5 - Prob. 5OQCh. 5 - A pendulum consists of a small object called a bob...Ch. 5 - A door in a hospital has a pneumatic closer that...Ch. 5 - The driver of a speeding truck slams on the brakes...Ch. 5 - A child is practicing for a BMX race. His speed...Ch. 5 - A large crate of mass m is placed on the flatbed...Ch. 5 - Before takeoff on an airplane, an inquisitive...Ch. 5 - Prob. 12OQCh. 5 - As a raindrop falls through the atmosphere, its...Ch. 5 - An object of mass m is sliding with speed vi at...Ch. 5 - A car is moving forward slowly and is speeding up....Ch. 5 - Prob. 2CQCh. 5 - Prob. 3CQCh. 5 - Prob. 4CQCh. 5 - Prob. 5CQCh. 5 - Prob. 6CQCh. 5 - Prob. 7CQCh. 5 - Prob. 8CQCh. 5 - Prob. 9CQCh. 5 - Prob. 10CQCh. 5 - It has been suggested that rotating cylinders...Ch. 5 - Prob. 12CQCh. 5 - Why does a pilot tend to black out when pulling...Ch. 5 - Prob. 1PCh. 5 - Prob. 2PCh. 5 - Prob. 3PCh. 5 - Prob. 4PCh. 5 - Prob. 5PCh. 5 - The person in Figure P5.6 weighs 170 lb. As seen...Ch. 5 - A 9.00-kg hanging object is connected by a light,...Ch. 5 - Prob. 8PCh. 5 - A 3.00-kg block starts from rest at the top of a...Ch. 5 - Prob. 10PCh. 5 - Prob. 11PCh. 5 - A block of mass 3.00 kg is pushed up against a...Ch. 5 - Two blocks connected by a rope of negligible mass...Ch. 5 - Three objects are connected on a table as shown in...Ch. 5 - Why is the following situation impossible? Your...Ch. 5 - Prob. 16PCh. 5 - A light string can support a stationary hanging...Ch. 5 - Why is the following situation impossible? The...Ch. 5 - A crate of eggs is located in the middle of the...Ch. 5 - Prob. 20PCh. 5 - Prob. 21PCh. 5 - A roller coaster at the Six Flags Great America...Ch. 5 - Prob. 23PCh. 5 - Prob. 24PCh. 5 - Prob. 25PCh. 5 - A pail of water is rotated in a vertical circle of...Ch. 5 - Prob. 27PCh. 5 - A child of mass m swings in a swing supported by...Ch. 5 - Prob. 29PCh. 5 - (a) Estimate the terminal speed of a wooden sphere...Ch. 5 - Prob. 31PCh. 5 - Prob. 32PCh. 5 - Prob. 33PCh. 5 - A 9.00-kg object starting from rest falls through...Ch. 5 - Prob. 35PCh. 5 - Prob. 36PCh. 5 - Prob. 37PCh. 5 - Prob. 38PCh. 5 - Prob. 39PCh. 5 - Prob. 40PCh. 5 - Prob. 41PCh. 5 - Prob. 42PCh. 5 - Consider the three connected objects shown in...Ch. 5 - A car rounds a banked curve as discussed in...Ch. 5 - Prob. 45PCh. 5 - An aluminum block of mass m1 = 2.00 kg and a...Ch. 5 - Figure P5.47 shows a photo of a swing ride at an...Ch. 5 - Why is the following situation impossible? A...Ch. 5 - A space station, in the form of a wheel 120 m in...Ch. 5 - A 5.00-kg block is placed on top of a 10.0-kg...Ch. 5 - In Example 6.5, we investigated the forces a child...Ch. 5 - Prob. 52PCh. 5 - Prob. 53PCh. 5 - Prob. 54PCh. 5 - Prob. 55PCh. 5 - Prob. 56PCh. 5 - Prob. 57PCh. 5 - Why is the following situation impossible? A book...Ch. 5 - A single bead can slide with negligible friction...Ch. 5 - An amusement park ride consists of a large...Ch. 5 - Prob. 61PCh. 5 - Prob. 62PCh. 5 - Prob. 63PCh. 5 - If a single constant force acts on an object that...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A sleigh is being pulled horizontally by a train of horses at a constant speed of 8.05 m/s. The magnitude of the normal force exerted by the snow-covered ground on the sleigh is 6.37 103 N. a. If the coefficient of kinetic friction between the sleigh and the ground is 0.23, what is the magnitude of the kinetic friction force experienced by the sleigh? b. If the only other horizontal force exerted on the sleigh is due to the horses pulling the sleigh, what must be the magnitude of this force?arrow_forwardIf a single constant force acts on an object that moves on a straight line, the objects velocity is a linear function of time. The equation v = vi + at gives its velocity v as a function of time, where a is its constant acceleration. What if velocity is instead a linear function of position? Assume that as a particular object moves through a resistive medium, its speed decreases as described by the equation v = vi kx, where k is a constant coefficient and x is the position of the object. Find the law describing the total force acting on this object.arrow_forwardA 3.00-kg object is moving in a plane, with its x and y coordinates given by x = 5t2 1 and y = 3t3 + 2, where x and y are in meters and t is in seconds. Find the magnitude of the net force acting on this object at t = 2.00 s.arrow_forward
- A 2.5 kg block is initially at rest on a horizontal surface. A horizontal force F of magnitude 5.7 N and a vertical force P are then applied to the block. The coefficients of friction for the block and surface are ls = 0.43 and lk = 0.24. (a) Determine the magnitude of the frictional force acting on the block if the magnitude of P is 8.0 N. (b) Determine the magnitude of the frictional force acting on the block if the magnitude of P is 10.0 N. N (c) Determine the magnitude of the frictional force acting on the block if the magnitude of P is 12.0 N. Narrow_forwardA block of mass m1 = 3.9 kg is placed on top of a block with mass m2 = 5.4 kg. A force, F = is applied to m2, at an angle 16.1 degrees above the horizontal. If the coefficient of static friction between all moving surfaces is 0.42 and the coefficient of kinetic friction is 0.32, determine the magnitude of the minimum force that will get the blocks moving.arrow_forwardA 2.5 kg block is initially at rest on a horizontal surface. A horizontal force F of magnitude 6.2 N and a vertical force P are then applied to the block. The coefficients of friction for the block and surface are us = 0.38 and uk = 0.22. (a) Determine the magnitude of the frictional force acting on the block if the magnitude of P is 8.0 N. (b) Determine the magnitude of the frictional force acting on the block if the magnitude of P is 10.0 N. (c) Determine the magnitude of the frictional force acting on the block if the magnitude of P is 12.0 N.arrow_forward
- A 2.5 kg block is initially at rest on a horizontal surface. A horizontal force F of magnitude 6.5 N and a vertical force P are then applied to the block. The coefficients of friction for the block and surface are us = 0.43 and MK = 0.22. P (a) Determine the magnitude of the frictional force acting on the block if the magnitude of P is 8.0 N. (b) Determine the magnitude of the frictional force acting on the block if the magnitude of P is 10.0 N. (c) Determine the magnitude of the frictional force acting on the block if the magnitude of P is 12.0 N.arrow_forwardA 2.5 kg block is initially at rest on a horizontal surface. A horizontal force F of magnitude 6.2 N and a vertical force P are then applied to the block. The coefficients of friction for the block and surface are ls = 0.37 and Uk = 0.22. (a) Determine the magnitude of the frictional force acting on the block if the magnitude of P is 8. N. (b) Determine the magnitude of the frictional force acting on the block if the magnitude of P is 10.0 N. N (c) Determine the magnitude of the frictional force acting on the block if the magnitude of P is 12.0 N. N Submit Answerarrow_forwardOne block rests upon a horizontal surface. A second identical block rests upon the first one. The coefficient of static friction between the blocks is the same as the coefficient of static friction between the lower block and the horizontal surface. A horizontal force is applied to the upper block, and its magnitude is slowly increased. When the force reaches 49.3 N, the upper block just begins to slide. The force is then removed from the upper block, and the blocks are returned to their original configuration. What is the magnitude of the horizontal force that should be applied to the lower block, so that it just begins to slide out from under the upper block?arrow_forward
- A 3.71 kg block is pushed along a horizontal floor by a force of magnitude 30.0 N at a downward angle 0 = 40.0%. The coefficient of kinetic friction between the block and the floor is 0.240. Calculate the magnitudes of (a) the frictional force on the block from the floor and (b) the block's acceleration.arrow_forwardA crate with a mass of m=254kg rests on the horizontal deck of a ship. The coefficient of static friction between the crate and the deck is μs=0.83. The coefficient of kinetic friction is μk=0.47. Write an expression for the magnitude of the minimum force, Fmin that must be applied to get the block moving from rest.arrow_forwardA block weighing 67.5 N rests on a plane inclined at 25.0° to the horizontal. A force F is applied to the object at 40.0° to the horizontal, pushing it upward on the plane. The coefficients of static and kinetic friction between the block and the plane are, respectively, 0.380 and 0.156. (a) What is the minimum value of F that will prevent the block from slipping down the plane? (b) What is the minimum value of F that will start the block moving up the plane? (c) What value of F will move the block up the plane with constant velocity?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY