Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 37P
To determine
The magnitude of gravitational force exerted by one particle on the other.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The drawing shows three particles far away from any other objects and located on a straight line. The masses of these particles are ma
-330 kg. ma- 520 kg, and mc-136 kg. Take the positive direction to be to the right. Find the net gravitational force, including sign,
acting on (a) particle A, (b) particle B, and (c) particle C.
(a) Number
(b) Number
(c) Number
0.500 m
Units N
Units N
Units N
B
0.250 m
Two objects attract each other with a gravitational force of magnitude 1.00×108 N when separated by 20.0 cm. If the total mass of the objects is 5.00 kg, what is the mass of each?
(a) Calculate the magnitude of the gravitational force exerted by the Moon on a 60 kg human standing on the surface of the
Moon. (The mass of the Moon is 7.4×1022 kg and its radius is 1.7x106 m.)
N
(b) Calculate the magnitude of the gravitational force exerted by the human on the Moon.
N
(c) For comparison, calculate the approximate magnitude of the gravitational force of this human on a similar human who is
standing 3 meters away.
N
(d) What approximations or simplifying assumptions must you make in these calculations? (Note: Some of these choices are false
because they are wrong physics!)
O Use the same gravitational constant in (a) and (b) despite its dependence on the size of the masses.
| Ignore the effects of the Sun, which alters the gravitational force that one object exerts on another.
O Treat the humans as though they were points or uniform-density spheres.
Treat the Moon as though it were spherically symmetric.
Chapter 5 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 5.1 - You press your physics textbook flat against a...Ch. 5.1 - A crate is located in the center of a flatbed...Ch. 5.1 - You are playing with your daughter in the snow....Ch. 5.2 - You are riding on a Ferris wheel (Fig. 5.8) that...Ch. 5.3 - Which of the following is impossible for a car...Ch. 5.3 - A bead slides freely along a curved wire lying on...Ch. 5.4 - Consider a sky surfer falling through air, as in...Ch. 5 - The driver of a speeding empty truck slams on the...Ch. 5 - The manager of a department store is pushing...Ch. 5 - An object of mass m moves with acceleration a down...
Ch. 5 - An office door is given a sharp push and swings...Ch. 5 - Prob. 5OQCh. 5 - A pendulum consists of a small object called a bob...Ch. 5 - A door in a hospital has a pneumatic closer that...Ch. 5 - The driver of a speeding truck slams on the brakes...Ch. 5 - A child is practicing for a BMX race. His speed...Ch. 5 - A large crate of mass m is placed on the flatbed...Ch. 5 - Before takeoff on an airplane, an inquisitive...Ch. 5 - Prob. 12OQCh. 5 - As a raindrop falls through the atmosphere, its...Ch. 5 - An object of mass m is sliding with speed vi at...Ch. 5 - A car is moving forward slowly and is speeding up....Ch. 5 - Prob. 2CQCh. 5 - Prob. 3CQCh. 5 - Prob. 4CQCh. 5 - Prob. 5CQCh. 5 - Prob. 6CQCh. 5 - Prob. 7CQCh. 5 - Prob. 8CQCh. 5 - Prob. 9CQCh. 5 - Prob. 10CQCh. 5 - It has been suggested that rotating cylinders...Ch. 5 - Prob. 12CQCh. 5 - Why does a pilot tend to black out when pulling...Ch. 5 - Prob. 1PCh. 5 - Prob. 2PCh. 5 - Prob. 3PCh. 5 - Prob. 4PCh. 5 - Prob. 5PCh. 5 - The person in Figure P5.6 weighs 170 lb. As seen...Ch. 5 - A 9.00-kg hanging object is connected by a light,...Ch. 5 - Prob. 8PCh. 5 - A 3.00-kg block starts from rest at the top of a...Ch. 5 - Prob. 10PCh. 5 - Prob. 11PCh. 5 - A block of mass 3.00 kg is pushed up against a...Ch. 5 - Two blocks connected by a rope of negligible mass...Ch. 5 - Three objects are connected on a table as shown in...Ch. 5 - Why is the following situation impossible? Your...Ch. 5 - Prob. 16PCh. 5 - A light string can support a stationary hanging...Ch. 5 - Why is the following situation impossible? The...Ch. 5 - A crate of eggs is located in the middle of the...Ch. 5 - Prob. 20PCh. 5 - Prob. 21PCh. 5 - A roller coaster at the Six Flags Great America...Ch. 5 - Prob. 23PCh. 5 - Prob. 24PCh. 5 - Prob. 25PCh. 5 - A pail of water is rotated in a vertical circle of...Ch. 5 - Prob. 27PCh. 5 - A child of mass m swings in a swing supported by...Ch. 5 - Prob. 29PCh. 5 - (a) Estimate the terminal speed of a wooden sphere...Ch. 5 - Prob. 31PCh. 5 - Prob. 32PCh. 5 - Prob. 33PCh. 5 - A 9.00-kg object starting from rest falls through...Ch. 5 - Prob. 35PCh. 5 - Prob. 36PCh. 5 - Prob. 37PCh. 5 - Prob. 38PCh. 5 - Prob. 39PCh. 5 - Prob. 40PCh. 5 - Prob. 41PCh. 5 - Prob. 42PCh. 5 - Consider the three connected objects shown in...Ch. 5 - A car rounds a banked curve as discussed in...Ch. 5 - Prob. 45PCh. 5 - An aluminum block of mass m1 = 2.00 kg and a...Ch. 5 - Figure P5.47 shows a photo of a swing ride at an...Ch. 5 - Why is the following situation impossible? A...Ch. 5 - A space station, in the form of a wheel 120 m in...Ch. 5 - A 5.00-kg block is placed on top of a 10.0-kg...Ch. 5 - In Example 6.5, we investigated the forces a child...Ch. 5 - Prob. 52PCh. 5 - Prob. 53PCh. 5 - Prob. 54PCh. 5 - Prob. 55PCh. 5 - Prob. 56PCh. 5 - Prob. 57PCh. 5 - Why is the following situation impossible? A book...Ch. 5 - A single bead can slide with negligible friction...Ch. 5 - An amusement park ride consists of a large...Ch. 5 - Prob. 61PCh. 5 - Prob. 62PCh. 5 - Prob. 63PCh. 5 - If a single constant force acts on an object that...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) Find the magnitude of the gravitational force between a planet with mass 7.50 1024 kg and its moon, with mass 2.70 1022 kg, if the average distance between their centers is 2.80 108 m. (b) What is the acceleration of the moon towards the planet? (c) What is the acceleration of the planet towards the moon?arrow_forwardSuppose the gravitational acceleration at the surface of a certain moon A of Jupiter is 2 m/s2. Moon B has twice the mass and twice the radius of moon A. What is the gravitational acceleration at its surface? Neglect the gravitational acceleration due to Jupiter, (a) 8 m/s2 (b) 4 m/s2 (c) 2 m/s2 (d) 1 m/s2 (e) 0.5 m/s2arrow_forwardThe mass of the Earth is approximately 5.98 1024 kg, and the mass of the Moon is approximately 7.35 1022 kg. The Moon and the Earth are separated by about 3.84 108 m. a. What is the magnitude of the gravitational force that the Moon exerts on the Earth? b. If Serena is on the Moon and her mass is 25 kg, what is the magnitude of the gravitational force on Serena due to the Moon? The radius of the Moon is approximately 1.74 106 m.arrow_forward
- The Sun has a mass of approximately 1.99 1030 kg. a. Given that the Earth is on average about 1.50 1011 m from the Sun, what is the magnitude of the Suns gravitational field at this distance? b. Sketch the magnitude of the gravitational field due to the Sun as a function of distance from the Sun. Indicate the Earths position on your graph. Assume the radius of the Sun is 7.00 108 m and begin the graph there. c. Given that the mass of the Earth is 5.97 1024 kg, what is the magnitude of the gravitational force on the Earth due to the Sun?arrow_forwardA satellite of mass 16.7 kg in geosynchronous orbit at an altitude of 3.58 104 km above the Earths surface remains above the same spot on the Earth. Assume its orbit is circular. Find the magnitude of the gravitational force exerted by the Earth on the satellite. Hint: The answer is not 163 N.arrow_forwardLet gM represent the difference in the gravitational fields produced by the Moon at the points on the Earths surface nearest to and farthest from the Moon. Find the fraction gM/g, where g is the Earths gravitational field. (This difference is responsible for the occurrence of the lunar tides on the Earth.)arrow_forward
- The gravitational force exerted on an astronaut on the Earths surface is 650 N directed downward. When she is in the space station in orbit around the Earth, is the gravitational force on her (a) larger, (b) exactly the same, (c) smaller, (d) nearly but not exactly zero, or (e) exactly zero?arrow_forward(a) Find the magnitude of the gravity force between a planet with mass 5.98 1024 kg and its moon, with mass 7.36 1022 kg, if the average distance between them is 3.84 108 m. (b) What is the acceleration of the moon toward the planet? (c) What is the acceleration of the planet toward the moon? (See Section 7.5.)arrow_forward(a) What is the acceleration due to gravity on the surface of the Moon? (b) On the surface of Mars? The mass of Mars is SW 6.4181023kg and its radius is 3.38106m .arrow_forward
- In the figure, three 8.07 kg spheres are located at distances d = 0.115 m, and d, = 0.456 m. What are the (a) magnitude and (b) direction (relative to the positive direction of the x axis) of the net gravitational force on sphere B due to spheres A and %3D %3D C?arrow_forwardIn the figure, three 6.49 kg spheres are located at distances d = 0.136 m, and d2 = 0.439 m. What are the (a) magnitude and (b) direction (relative to the positive direction of the x axis) of the net gravitational force on sphere B due to spheres A and C? B (a) Number Units (b) Number i Unitsarrow_forwardDuring a solar eclipse, the Moon is positioned directly between Earth and the Sun. Find the magnitude of the net gravitational force acting on the Moon during the solar eclipse due to both Earth and the Sun. The masses of the Sun, Earth, and the Moon are 1.99×10301.99×1030 kg, 5.98×10245.98×1024 kg, and 7.36×10227.36×1022 kg, respectively. The Moon's mean distance from Earth is 3.84×1083.84×108 m, and Earth's mean distance from the Sun is 1.50×10111.50×1011 m. The gravitational constant is ?=6.67×10−11 Nm2/kg2G=6.67×10−11 Nm2/kg2.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY