Boilers are used in most chemical plants to generate steam for various purposes, such as to preheat process streams fed to reactors and separation units. In one such process, steam and a cold process fluid are fed to a heat exchanger where enough energy is transferred from the steam to cause a large fraction of it to condense. The uncondensed steam is vented to the atmosphere, and the liquid condensate is recycled to a deaerator into which another liquid stream (makeup water) is fed. The makeup water contains some dissolved impurities and other chemicals that help prevent deposition of solids on boiler walls and heating elements, which would lead to a reduction in operating efficiency and eventually to safety hazards, possibly including explosions. The liquid leaving the deaerator is the feed to the boiler. In the boiler, most of the water in the feed evaporates to form steam, and some of the impurities in the feedwater precipitate to form solid particles suspended in the liquid (kept in suspension by the chemical additives in the makeup w ater). The liquid and suspended solids are drawn oft' as boiler blowdown, either in manual bursts or w ith a continuous blowdown system.
A diagram of the system is shown below. The symbol I is used for combined impurities and chemical additives. The makeup water contains 1.0 kg 1/2.0 X 103 kg HjO, and the ratio in the blowdown is 1.0 kg 1/3.5 X 102 kg HiO. Of the steam fed to the heat exchanger, 76% is condensed.
- In your own words, describe why makeup water, chemical additives to the makeup water, and blowdown are necessary in this process. Speculate on the probable disadvantage of making the 1/HsO ratio in the blowdown (I) too small, and (ii) too large.
- Assume a basis of calculation and draw and fully label a flow chart of the process. (When you draw the heat exchanger you can omit the process fluid, which plays no role in the problem.)
- Carry out a degree-of-freedom analysis and outline a solution procedure (which equations would you write in which order to calculate all of the unknow ns on the chart?).
(d, Calculate the ratio (mass of makeup water/lOOkg steam produced in boiler) and the percentage of the boiler feedwater taken off as blowdown.
(c) A proposal has been made to use highly purified water as makeup. List the benefits that would result from doing so and the most likely reason for not doing it.
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
Elementary Principles of Chemical Processes, Binder Ready Version
Additional Engineering Textbook Solutions
Starting Out with Python (4th Edition)
Concepts Of Programming Languages
Java How to Program, Early Objects (11th Edition) (Deitel: How to Program)
Management Information Systems: Managing The Digital Firm (16th Edition)
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
Modern Database Management
- a gas. Problems in Two phase flow docx horizontal pipe carrying a liquid and that can exist in 6. Explain what is meant by gas hold-up and describe ways in which it can be measured. Ets required to transporta ydrocarbon as a two-phase mixture ofarrow_forward7. It is required to transport a hydrocarbon as a two-phase mixture of liquid and vapour along a smooth-walled pipe with an inside diam- eter of 100 mm. The total hydrocarbon flow rate is 2.4 kgs-1 with a vapour mass fraction of 0.085. The pipe is to operate at an absolute pressure of 2.2 bar. The liquid density is 720 kgm³, and viscosity is 4.8 × 10-4 Nsm², while for the vapour, the density is 1.63 kgm³, and the viscosity is 2.7 x 10-5 Nsm-2. Determine the maximum per- missible length of pipe if the pressure drop along the pipe is not to exceed 20 kNm-2. Answer: 44 marrow_forward13. Show that the gas void fraction for a flowing gas-liquid mixture can be expressed in terms of the phase velocity, quality, and densities of the mixture as 1 α = PU (1-x) 1+18 Բ. Ա. xarrow_forward
- velocis the air and water. Answer: 0.02605 kgs-1, 61.1 kgm 3, 0.94, 0.822 ms-1, 0.051 ms-1 5. Describe, with the use of sketches, the various two-phase flow regimes that can exist in a horizontal pipe carrying a liquid and a gas. 6. Explate what is mean by gas hold up and describe way which itarrow_forward2. Describe, with the use of sketches, the various flow regimes that can exist in a vertical pipe carrying two-phase flow (liquid and gas). •arrow_forward12. A mixture of oil and gas flows through a horizontal pipe with an inside diameter of 150 mm. The respective volumetric flow rates for the oil and gas are 0.015 and 0.29 m³s-¹. Determine the gas void frac- tion and the average velocities of the oil and gas. The friction factor may be assumed to be 0.0045. The gas has a density of 2.4 kgm³ and viscosity of 1 x 10-5 Nsm-2. The oil has a density of 810 kgm-3 and density of 0.82 Nsm-2. Answer: 0.79, 20.8 ms-1, 4 ms-1arrow_forward
- 14. A bubbly mixture of gas and liquid flows up a vertical glass tube with an internal diameter of 25 mm. The liquid flow is controlled to be 0.02 litres per second, and the gas flow is 10 litres per second. The bubble velocity is determined photographically to have a velocity of 30 ms-¹. Determine the gas void fraction for the two-phase mixture and the liquid velocity. Answer: 0.68, 0.13 ms-¹ CLarrow_forward8.9 × 10-4 Nsm-2. Answer: 2.7 kNm²²m-1 4. An experimental test rig is used to examine two-phase flow regimes in horizontal pipelines. A particular experiment involved uses air and water at a temperature of 25°C, which flow through a horizontal glass tube with an internal diameter of 25.4 mm and a length of 40 m. Water is admitted at a controlled rate of 0.026 kgs-¹ at one end and air at a rate of 5 x 104 kgs¹ in the same direction. The density of water is 1000 kgm³, and the density of air is 1.2 kgm³. Determine the mass flow rate, the mean density, gas void fraction, and the superficial velocities of the air and water. Answer: 0.02605 kgs-1, 61.1 kgm-3, 0.94, 0.822 ms-1, 0.051 ms-1arrow_forwardA 1 μm radius water droplet is settling in paraffin oil. The oil contains an oil-soluble surfactant. The surface dilatational viscosity is 1×104 kg/s. Calculate the settling velocity using the Stokes, Hadamard-Rybczynski and the Boussinesq equations. Compare your results. The density of the oil is 770 kg/m³ and its viscosity is 0.8×10-³ Pa s. Sel Given: The semino velochy v. t the drop is calcula out in a song Rd=1×10-6 m, nath d=1×104 kg/s, Pooib Md=1×10-³ Pa s. S. μ=0.8×10-3 Pas Garing bigit p=770 kg/m³, logo Pd=1000 kg/m³arrow_forward
- 1. Determine the range of mean density of a mixture of air in a 50:50 oil-water liquid phase across a range of gas void fractions. The den- sity of oil is 900 kgm³, water is 1000 kgm³, and gas is 10 kgm³.arrow_forward9. Characterise the main concepts of a homogeneous flow model, sepa- rated flow models, and specific flow pattern models. 10 A mixture of high pressure water and steam at a rate of 0.5 kgs-1 hows up a vertical tube with an inside diameter of 25.41 at pres- sure 22 bai. Determine the type of flow if the mass quality is 1%. Thearrow_forwardSubject: Engineering Foundation Class: Fourth AL-Mansour University College Civil Engineering Department Monthly Exam اسم الطالبة Date: 12/11/2024 Time: 1.5 hrs Lec: Dr. Lubna Abrahman Answer ALL questions Q1: Standard penetration tests were carried out in normally consolidated fine sands at different locations. The following data were collected, with average unit weights assumed for the entire depth. Determine the (N)60 values using the cor- rection factors proposed by (a) Liao and Whitman (1986) and (b) Skempton (1986). Liao and Whitman's relationship (1986): 705 Depth (m) Average unit weight (kN/m²) N 3.5 18.0 8.8 18.0 12.4 18.5 18.5 18.5 23.6 19.0 21 16.9 19.0 285922 12 15 19 26 26 Skempton's relationship (1986): 2 CN- 1+ blearrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The