Elementary Principles of Chemical Processes, Binder Ready Version
4th Edition
ISBN: 9781118431221
Author: Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.95P
Interpretation Introduction
(a)
Interpretation:
Calculate the mole percentage of propane in the fuel.
Concept introduction:
Mass is defined as,
Where, m = mass, n = moles, M = molar mass
Mole fraction is defined as,
Where, x = mole fraction, nA and nB are moles of A and B.
Interpretation Introduction
(b)
Interpretation:
Calculate the elemental molar composition of the fuel.
Concept introduction:
Mass is defined as,
Where, m = mass, n = moles, M = molar mass
Mole fraction is defined as,
Where, x = mole fraction, nA and nB are moles of A and B.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
(30)
6. In a process design, the following process streams must be cooled or heated:
Stream
No
mCp
Temperature In Temperature Out
°C
°C
kW/°C
1
5
350
270
2
9
270
120
3
3
100
320
4
5
120
288
Use the MUMNE algorithm for heat exchanger networks with a minimum approach
temperature of 20°C.
(5)
a. Determine the temperature interval diagram.
(3)
(2)
(10)
(10)
b. Determine the cascade diagram, the pinch temperatures, and the minimum hot and
cold utilities.
c. Determine the minimum number of heat exchangers above and below the pinch.
d. Determine a valid heat exchange network above the pinch.
e. Determine a valid heat exchange network below the pinch.
Use this equation to solve it.
Q1: Consider the following transfer function
G(s)
5e-s
15s +1
1. What is the study state gain
2. What is the time constant
3. What is the value of the output at the end if the input is a unit step
4. What is the output value if the input is an impulse function with amplitude equals
to 3, at t=7
5. When the output will be 3.5 if the input is a unit step
Chapter 4 Solutions
Elementary Principles of Chemical Processes, Binder Ready Version
Ch. 4 - Prob. 4.1PCh. 4 - Rain is falling on a poorly designed 150-m" flat...Ch. 4 - A liquid-phase chemical reaction A -* B takes...Ch. 4 - A stream consisting of 44.6 mole% benzene and...Ch. 4 - Prob. 4.5PCh. 4 - A liquid mixture of acetone and water contains 35...Ch. 4 - Prob. 4.7PCh. 4 - Prob. 4.8PCh. 4 - Inside a distillation column (see Problem 4.8), a...Ch. 4 - Prob. 4.10P
Ch. 4 - In the production of soybean oil, dried and flaked...Ch. 4 - Prob. 4.12PCh. 4 - A process is carried out in which a mixture...Ch. 4 - Strawberries contain about 15wt% solids and 85wt%...Ch. 4 - Two streams flow into a 500-gallon tank. The first...Ch. 4 - A fuel distributor supplies four liquid fuels,...Ch. 4 - Prob. 4.17PCh. 4 - One thousand kilograms per hour of a mixture...Ch. 4 - L-Serine is an amino acid that often is provided...Ch. 4 - A 100 kmol/h stream that is 97 mole% carbon...Ch. 4 - A pharmaceutical product, P, is made in a batch...Ch. 4 - A liquid mixture containing ethanol (55.0 wt%) and...Ch. 4 - A stream of humid air containing 1.50 mole% H2O(v)...Ch. 4 - A liquid mixture contains 60.0 wt% ethanol (E),...Ch. 4 - Certain vegetables and fruits contain plant...Ch. 4 - Two aqueous sulfuric acid solutions containing...Ch. 4 - A paint mixture containing 25.0% of a pigment and...Ch. 4 - In the commercial production of sugar (sucrose),...Ch. 4 - Prob. 4.29PCh. 4 - A garment to protect the wearer from toxic agents...Ch. 4 - A dilute aqueous solution of H2SO4 (Solution A) is...Ch. 4 - Gas streams containing hydrogen and nitrogen in...Ch. 4 - An artificial kidney is a device that removes...Ch. 4 - The indicator-dilution method is a technique used...Ch. 4 - Prob. 4.35PCh. 4 - Gas absorption or gas scrubbing is a commonly used...Ch. 4 - The SO2 scrubbing tower described in Problem 4.36...Ch. 4 - Prob. 4.38PCh. 4 - The hormone estrogen is produced in the ovaries of...Ch. 4 - A liquid mixture containing 30.0mole% benzene (B),...Ch. 4 - Seawater containing 3.50 wt% salt passes through a...Ch. 4 - Inside the column a liquid stream flows downward...Ch. 4 - Prob. 4.43PCh. 4 - Effluents from metal-finishing plants have the...Ch. 4 - In an absorption tower (or absorber), a gas is...Ch. 4 - In the production of a bean oil, beans containing...Ch. 4 - Boilers are used in most chemical plants to...Ch. 4 - Following is a diagram of the shirt-cleaning...Ch. 4 - A drug (D) is produced in a three-stage extraction...Ch. 4 - Prob. 4.52PCh. 4 - Ammonia is oxidized to nitric oxide in the...Ch. 4 - Prob. 4.54PCh. 4 - A stream containing H2S and inert gases and a...Ch. 4 - 436. The reaction between ethylene and hydrogen...Ch. 4 - Prob. 4.57PCh. 4 - Prob. 4.58PCh. 4 - Titanium dioxide (TiCb) is used extensively as a...Ch. 4 - Prob. 4.60PCh. 4 - Prob. 4.61PCh. 4 - Oxygen consumed by a living organism in aerobic...Ch. 4 - A genetically engineered strain of Escherichia...Ch. 4 - The gas-phase reaction between methanol and acetic...Ch. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - Methane and oxygen react in the presence of a...Ch. 4 - Ethane is chlorinated in a continuous reactor:...Ch. 4 - Ethanol can be produced commercially by the...Ch. 4 - Prob. 4.70PCh. 4 - Solid calcium fluoride (CaF2) reacts with sulfuric...Ch. 4 - Prob. 4.72PCh. 4 - Chlorobenzene (C^HsCl), an important solvent and...Ch. 4 - A catalytic reactor is used to produce...Ch. 4 - 4.7'6. Methanol is produced by reacting carbon...Ch. 4 - Methane reacts with chlorine to produce methyl...Ch. 4 - Ethylene oxide is produced by the catalytic...Ch. 4 - Methanol is synthesized from carbon monoxide and...Ch. 4 - The fresh feed to an ammonia production process...Ch. 4 - A gas contains 75.0 wt% methane. 10.0% ethane....Ch. 4 - Five liters of liquid n-hexane and 4 liters of...Ch. 4 - Gasoline, which we will represent as having the...Ch. 4 - Prob. 4.87PCh. 4 - Natural gas containing a mixture of methane,...Ch. 4 - Propane is burned completely with excess oxygen....Ch. 4 - Prob. 4.91PCh. 4 - Prob. 4.92PCh. 4 - Liquid methanol is fed to a space heater at a rate...Ch. 4 - Prob. 4.94PCh. 4 - Prob. 4.95PCh. 4 - A fuel oil is analyzed and found to contain 85.0...Ch. 4 - Prob. 4.97PCh. 4 - Prob. 4.98PCh. 4 - Prob. 4.99PCh. 4 - 4.1 (Mt. You have been sent by the Environmental...Ch. 4 - Fuel oils contain primarily organic compounds and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.Similar questions
- give me solution math not explinarrow_forwardExample (6): An evaporator is concentrating F kg/h at 311K of a 20wt% solution of NaOH to 50wt %. The saturated steam used for heating is at 399.3K. The pressure in the vapor space of the evaporator is 13.3 KPa abs. The 5:48 O Transcribed Image Text: Example (7): Determine thearrow_forward14.9. A forward feed double-effect vertical evaporator, with equal heating areas in each effect, is fed with 5 kg/s of a liquor of specific heat capacity of 4.18 kJ/kg K. and with no boiling point rise, so that 50 per cent of the feed liquor is evaporated. The overall heat transfer coefficient in the second effect is 75 per cent of that in the first effect. Steam is fed at 395 K and the boiling point in the second effect is 373 K. The feed is heated by an external heater to the boiling point in the first effect. It is decided to bleed off 0.25 kg/s of vapour from the vapour line to the second effect for use in another process. If the feed is still heated to the boiling point of the first effect by external means, what will be the change in steam consumption of the evaporator unit? For the purpose of calculation, the latent heat of the vapours and of the steam may both be taken as 2230 kJ/kgarrow_forward
- Example(3): It is desired to design a double effect evaporator for concentrating a certain caustic soda solution from 12.5wt% to 40wt%. The feed at 50°C enters the first evaporator at a rate of 2500kg/h. Steam at atmospheric pressure is being used for the said purpose. The second effect is operated under 600mmHg vacuum. If the overall heat transfer coefficients of the two stages are 1952 and 1220kcal/ m2.h.°C. respectively, determine the heat transfer area of each effect. The BPR will be considered and present for the both effect 5:49arrow_forwardالعنوان ose only Q Example (7): Determine the heating surface area 개 required for the production of 2.5kg/s of 50wt% NaOH solution from 15 wt% NaOH feed solution which entering at 100 oC to a single effect evaporator. The steam is available as saturated at 451.5K and the boiling point rise (boiling point evaluation) of 50wt% solution is 35K. the overall heat transfer coefficient is 2000 w/m²K. The pressure in the vapor space of the evaporator at atmospheric pressure. The solution has a specific heat of 4.18kJ/ kg.K. The enthalpy of vaporization under these condition is 2257kJ/kg Example (6): 5:48 An evaporator is concentrating F kg/h at 311K of a 20wt% solution of NaOH to 50wt %. The saturated steam used for heating is at 399.3K. The pressure in the vapor space of the evaporator is 13.3 KPa abs. The 5:48 1 J ۲/۱ ostrarrow_forwardExample 8: 900 Kg dry solid per hour is dried in a counter current continues dryer from 0.4 to 0.04 Kg H20/Kg wet solid moisture content. The wet solid enters the dryer at 25 °C and leaves at 55 °C. Fresh air at 25 °C and 0.01Kg vapor/Kg dry air is mixed with a part of the moist air leaving the dryer and heated to a temperature of 130 °C in a finned air heater and enters the dryer with 0.025 Kg/Kg alry air. Air leaving the dryer at 85 °C and have a humidity 0.055 Kg vaper/Kg dry air. At equilibrium the wet solid weight is 908 Kg solid per hour. *=0.0088 Calculate:- Heat loss from the dryer and the rate of fresh air. Take the specific heat of the solid and moisture are 980 and 4.18J/Kg.K respectively, A. =2500 KJ/Kg. Humid heat at 0.01 Kg vap/Kg dry=1.0238 KJ/Kg. "C. Humid heat at 0.055 Kg/Kg 1.1084 KJ/Kg. "C 5:42 Oarrow_forward
- Q1: From the Figure below for (=0.2 find the following 1. Rise Time 2. Time of oscillation 3. Overshoot value 4. Maximum value 5. When 1.2 which case will be? 1.6 1.4 1.2 12 1.0 |=0.8- 0.6 0.4 0.8 0.2- 0.6 0.4 0.2 1.2 = 1.0 0 2 4 6 8 10 10 t/Tarrow_forwardPlease, I need solution in detailsarrow_forwardplease, I need solution in detailsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The