(a)
Interpretation:
If the given process is found as continuous, batch or semibatch and if it is in transient or steady state.
Concept introduction:
Any chemical process can be identified on the basis of its classification. The chemical processes are classified into following groups:
Batch processes:
In this process the feed is filled to the vessel in the beginning but later the contents are removed. During this process, no mass exchange is done between the system and surroundings.
Continuous processes:
In this process, the input and output flows throughout in the duration of the process.
Semibatch processes:
These processes are of those types which are neither batch process nor continuous.
Steady state:
Any process in which the values of variables like temperature, pressure, volume, flow rates etc. do not change with time except some minor fluctuations in content mean values, then the process is steady state.
Transient:
Any process, whose variable change with time is known as transient or unsteady-state process.
Answer to Problem 4.1P
The process is continuous and transient.
Explanation of Solution
Given:
The volume of tank is
Water enters at a rate of
In the given process, the water flows inside at a rate of 6kg/s and it withdraws at rate of 3kg/s which means that the process is continuous in which the input and output flows at continuous rate till the process ends.
Further, initially, the container was half filled but the for 1 second, 6kg water enters the system and 3 kg goes out which means that the volume of the container will keep changing and hence the process can not be steady-state.
Thus the process is transient in nature under which the variable changes with time.
(b)
Interpretation:
The mass balance for the given process has to be determined. The terms of the general balance should be identified in the obtained equation and reason should be given for omitting any term.
Concept introduction:
In any system, for any conserved quantity like total mass, mass of particular species, momentum, energy etc. the balance can be expressed as follows:
Where, input is feed that enters through system boundary, generation is the content produced within system, output is the content which leaves the system and consumption is the feed consumed within the system while accumulation is the actual product build up in the system.
Answer to Problem 4.1P
The mass balance for the given process is
Where, input is the water coming inside the system and output is the water flowing out the system.
The terms generation and consumption are omitted because the process is continuous and there is no reaction.
Explanation of Solution
Given:
The volume of tank is
Water enters at a rate of
Calculation:
As per the given problem:
The process is continuous for which there is no reaction and so, the generation is considered as zero. Here, the flow is continuous from the system so the output will also be considered to be the zero.
In this system, there is only the input and output of water without any reaction.
Since, no reaction so:
Putting the values, the equation becomes:
Hence, the mass balance is:
Hence, the balance is:
(c)
Interpretation:
How long will tank take to overflow?
Concept introduction:
In any system, for any conserved quantity like total mass, mass of particular species, momentum, energy etc. the balance can be expressed as follows:
Where, input is feed that enters through system boundary, generation is the content produced within system, output is the content which leaves the system and consumption is the feed consumed within the system while accumulation is the actual product build up in the system.
Answer to Problem 4.1P
The tank will start to overflow after 333sec.
Explanation of Solution
Given:
The volume of tank is
Water enters at a rate of
Calculation:
The tank is half filled, so the content of tank is
From the mass balance we have,
Hence, the tank fills 3 kg in one second.
Now, the time taken to fill the tank with the volume is 1.0m3.
Density of water is
Hence, the time required to fill the tank is:
Want to see more full solutions like this?
Chapter 4 Solutions
Elementary Principles of Chemical Processes, Binder Ready Version
- (30) 6. In a process design, the following process streams must be cooled or heated: Stream No mCp Temperature In Temperature Out °C °C kW/°C 1 5 350 270 2 9 270 120 3 3 100 320 4 5 120 288 Use the MUMNE algorithm for heat exchanger networks with a minimum approach temperature of 20°C. (5) a. Determine the temperature interval diagram. (3) (2) (10) (10) b. Determine the cascade diagram, the pinch temperatures, and the minimum hot and cold utilities. c. Determine the minimum number of heat exchangers above and below the pinch. d. Determine a valid heat exchange network above the pinch. e. Determine a valid heat exchange network below the pinch.arrow_forwardUse this equation to solve it.arrow_forwardQ1: Consider the following transfer function G(s) 5e-s 15s +1 1. What is the study state gain 2. What is the time constant 3. What is the value of the output at the end if the input is a unit step 4. What is the output value if the input is an impulse function with amplitude equals to 3, at t=7 5. When the output will be 3.5 if the input is a unit steparrow_forward
- give me solution math not explinarrow_forwardExample (6): An evaporator is concentrating F kg/h at 311K of a 20wt% solution of NaOH to 50wt %. The saturated steam used for heating is at 399.3K. The pressure in the vapor space of the evaporator is 13.3 KPa abs. The 5:48 O Transcribed Image Text: Example (7): Determine thearrow_forward14.9. A forward feed double-effect vertical evaporator, with equal heating areas in each effect, is fed with 5 kg/s of a liquor of specific heat capacity of 4.18 kJ/kg K. and with no boiling point rise, so that 50 per cent of the feed liquor is evaporated. The overall heat transfer coefficient in the second effect is 75 per cent of that in the first effect. Steam is fed at 395 K and the boiling point in the second effect is 373 K. The feed is heated by an external heater to the boiling point in the first effect. It is decided to bleed off 0.25 kg/s of vapour from the vapour line to the second effect for use in another process. If the feed is still heated to the boiling point of the first effect by external means, what will be the change in steam consumption of the evaporator unit? For the purpose of calculation, the latent heat of the vapours and of the steam may both be taken as 2230 kJ/kgarrow_forward
- Example(3): It is desired to design a double effect evaporator for concentrating a certain caustic soda solution from 12.5wt% to 40wt%. The feed at 50°C enters the first evaporator at a rate of 2500kg/h. Steam at atmospheric pressure is being used for the said purpose. The second effect is operated under 600mmHg vacuum. If the overall heat transfer coefficients of the two stages are 1952 and 1220kcal/ m2.h.°C. respectively, determine the heat transfer area of each effect. The BPR will be considered and present for the both effect 5:49arrow_forwardالعنوان ose only Q Example (7): Determine the heating surface area 개 required for the production of 2.5kg/s of 50wt% NaOH solution from 15 wt% NaOH feed solution which entering at 100 oC to a single effect evaporator. The steam is available as saturated at 451.5K and the boiling point rise (boiling point evaluation) of 50wt% solution is 35K. the overall heat transfer coefficient is 2000 w/m²K. The pressure in the vapor space of the evaporator at atmospheric pressure. The solution has a specific heat of 4.18kJ/ kg.K. The enthalpy of vaporization under these condition is 2257kJ/kg Example (6): 5:48 An evaporator is concentrating F kg/h at 311K of a 20wt% solution of NaOH to 50wt %. The saturated steam used for heating is at 399.3K. The pressure in the vapor space of the evaporator is 13.3 KPa abs. The 5:48 1 J ۲/۱ ostrarrow_forwardExample 8: 900 Kg dry solid per hour is dried in a counter current continues dryer from 0.4 to 0.04 Kg H20/Kg wet solid moisture content. The wet solid enters the dryer at 25 °C and leaves at 55 °C. Fresh air at 25 °C and 0.01Kg vapor/Kg dry air is mixed with a part of the moist air leaving the dryer and heated to a temperature of 130 °C in a finned air heater and enters the dryer with 0.025 Kg/Kg alry air. Air leaving the dryer at 85 °C and have a humidity 0.055 Kg vaper/Kg dry air. At equilibrium the wet solid weight is 908 Kg solid per hour. *=0.0088 Calculate:- Heat loss from the dryer and the rate of fresh air. Take the specific heat of the solid and moisture are 980 and 4.18J/Kg.K respectively, A. =2500 KJ/Kg. Humid heat at 0.01 Kg vap/Kg dry=1.0238 KJ/Kg. "C. Humid heat at 0.055 Kg/Kg 1.1084 KJ/Kg. "C 5:42 Oarrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The