Principles of General Chemistry
3rd Edition
ISBN: 9780073402697
Author: SILBERBERG, Martin S.
Publisher: McGraw-Hill College
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.20P
Interpretation Introduction
Interpretation: Two sets of molecular and total ionic equations that have same net ionic equation as equation below should be determined.
Concept introduction: Three types of equations are used for representation of ionic reactions. These are mentioned below.
1. Molecular equation
2. Total ionic equation
3. Net ionic equation
In molecular equations indicate reactants and products in undissociated forms. In total ionic equations, total ions that are dissociated in reaction are represented while in net ionic reactions, only useful ions are written.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
Principles of General Chemistry
Ch. 4 - (Sample Problems 4.1 and 4.2) 4.1 What two factors...Ch. 4 - (Sample Problems 4.1 and 4.2) 4.2 What must be...Ch. 4 - What occurs on the molecular level when an ionic...Ch. 4 - Which of the following scenes best represents how...Ch. 4 - Which of the following scenes best represents a...Ch. 4 - Why are some ionic compounds soluble in water and...Ch. 4 - Prob. 4.7PCh. 4 - Is each of the following very soluble in water?...Ch. 4 - Is each of the following very soluble in water?...Ch. 4 - Does an aquesous solution of each of the following...
Ch. 4 - Does an aquesous solution of each of the following...Ch. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - How many moles and how many ions of each type are...Ch. 4 - Prob. 4.15PCh. 4 - How many moles of H+ ions are present in the...Ch. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Use Table 4.1 to determine which of the following...Ch. 4 - The beakers represent the aqueous reaction of...Ch. 4 - Complete the following precipitation reactions...Ch. 4 - Complete the following precipitation reactions...Ch. 4 - When each of the following pairs of aqueous...Ch. 4 - When each of the following pairs of aqueous...Ch. 4 - If 38.5 mL of Iead(II) nitrate soIution reacts...Ch. 4 - If 25.0 mL of silver nitrate soIution reacts with...Ch. 4 - With ions shown as spheres and solvent molecules...Ch. 4 - The precipitation reaction between 25.0 mL of a...Ch. 4 - The mass percent of Cl- in a seawater sample is...Ch. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Name three common weak acids. (b) Name one common...Ch. 4 - The net ionic equation for the aqueous...Ch. 4 - Prob. 4.38PCh. 4 - Complete the following acid-base reactions with...Ch. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - An auto mechnaic spills 88 mL of 2.60MH2SO4...Ch. 4 - Prob. 4.45PCh. 4 - An unknown amount of acid can often be determined...Ch. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Give the oxidation number of sulfur in the...Ch. 4 - Give the oxidation number of arsenic in the...Ch. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Give the oxidation number of chromium in the...Ch. 4 - Prob. 4.56PCh. 4 - Identify the oxidizing and reducing agents in the...Ch. 4 - Prob. 4.58PCh. 4 - Identify the oxidizing and reducing agents in the...Ch. 4 - Prob. 4.60PCh. 4 - Prob. 4.61PCh. 4 - Prob. 4.62PCh. 4 - Which of the types of reactions discussed in...Ch. 4 - Prob. 4.64PCh. 4 - Prob. 4.65PCh. 4 - Predict the product(s) and write a balanced...Ch. 4 - Prob. 4.67PCh. 4 - Predict the product(s) and write a balanced...Ch. 4 - Predict the product(s) and write a balanced...Ch. 4 - How many grams of O2 can be prepared from the...Ch. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Before are welding was developed, a displacement...Ch. 4 - Nutritional biochemisis have known for decades...Ch. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Prob. 4.81PCh. 4 - Prob. 4.82PCh. 4 - For the following aqueous reactions, complete and...Ch. 4 - Prob. 4.84PCh. 4 - Prob. 4.85PCh. 4 - Prob. 4.86PCh. 4 - Prob. 4.87PCh. 4 - Prob. 4.88PCh. 4 - Prob. 4.89PCh. 4 - Prob. 4.90PCh. 4 - The active compound in Pepto-Bismol contains C, H,...Ch. 4 - Two aqueous solutions contain the ions indicated...Ch. 4 - In 1997 and 2009, at United Nations conferences on...Ch. 4 - Prob. 4.94PCh. 4 - Prob. 4.95PCh. 4 - Prob. 4.96PCh. 4 - Prob. 4.97P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- 1. Sometimes a reaction can fall in more than one category. Into what category (or categories) does the reaction of Ba(OH)2(aq) + H+PO4(aq) fit? acid-base and oxidation-reduction oxidation-reduction acid-base and precipitation precipitationarrow_forwardWrite a balanced equation for the reaction of hydroiodic acid, HI, with calcium hydroxide, Ca(OH)2. Then, write the balanced complete ionic equation and the net ionic equation for this neutralization reaction.arrow_forwardA soluble iodide was dissolved in water. Then an excess of silver nitrate, AgNO3, was added to precipitate all of the iodide ion as silver iodide, AgI. If 1.545 g of the soluble iodide gave 2.185 g of silver iodide, how many grams of iodine are in the sample of soluble iodide? What is the mass percentage of iodine, I, in the compound?arrow_forward
- Vitamin C, ascorbic acid (C6HgO6)(molar mass 176.1 g/mol), is a reducing agent. One way to determine the ascorbic acid content of a sample is to mix the acid with an excess of iodine, C6HgO6(aq) + I2(aq) + H2O(l) C6HgO6(aq) + 2 H3O+(aq) + 2 I(aq) and then titrate the iodine that did not react with the ascorbic acid with sodium thiosulfate. The balanced, net ionic equation for the reaction occurring in this titration is I2(aq) + 2 S2O32(aq)2 I(aq) + S4O62(aq) Suppose 50.00 mL of 0.0520 M I2 was added to the sample containing ascorbic acid. After the ascorbic acid/I2, reaction was complete, the I2 not used in this reaction required 20.30 mL of 0.196 M Na2S2O3 for titration to the equivalence point. Calculate the mass of ascorbic acid in the unknown sample.arrow_forwardChlorisondamine chloride (C14H20Cl6N2) is a drug used in the treatment of hypertension. A 1.28-g sample of a medication containing the drug was treated to destroy the organic material and to release all the chlorine as chloride ion. When the filtered solution containing chloride ion was treated with an excess of silver nitrate, 0.104 g silver chloride was recovered. Calculate the mass percent of chlorisondamine chloride in the medication, assuming the drug is the only source of chloride.arrow_forwardPotassium permanganate (KMnO4) solutions are used for the determination of Fe2+ in samples of unknown concentration. As a laboratory assistant, you are supposed to prepare 500 mL of a 0.1000 M KMnO4 solution. What mass of KMnO4, in grams, do you need?arrow_forward
- You are given a solid mixture of NaNO2 and NaCl and are asked to analyze it for the amount of NaNO2 present. To do so, you allow the mixture to react with sulfamic acid, HSO3NH2, in water according to the equation NaNO2(aq) + HSO3NH2(aq) NaHSO4(aq) + H2O() + N2(g) What is the weight percentage of NaNO2 in 1.232 g of the solid mixture if reaction with sulfa-mic acid produces 295 mL of dry N2 gas with a pressure of 713 mm Hg at 21.0 C?arrow_forwardAn unknown solid acid is either citric acid or tartaric acid. To determine which acid you have, you titrate a sample of the solid with aqueous NaOH and from this determine the molar mass of the unknown acid. The appropriate equations are as follows. Citric acid: H3C6H5O7(aq) + 3 NaOH(aq) 3 H2O(l) + Na3C6H5O7(aq) Tartaric acid: H2C4H4O6(aq)+ 2 NaOH(aq) 2 H2O(l) + Na2C4H4O6(aq) A 0.956-g sample requires 29.1 mL of 0.513 M NaOH to consume the acid completely. What is The unknown acid?arrow_forwardVitamin C is ascorbic acid, HC6H7O6, which can be titrated with a strong base. HC6H7O6(aq) + NaOH(aq) NaC6H7O6(aq) + H2O() A student dissolved a 500.0-mg vitamin C tablet in 200.0 mL water and then titrated it with 0.1250-M NaOH. It required 21.30 mL of the base to reach the equivalence point. Calculate the mass percentage of the tablet that is impurity.arrow_forward
- Consider the following generic equation: H+(aq)+ B(aq)HB(aq)For which of the following pairs would this be the correct prototype equation for the acid-base reaction in solution? If it is not correct, write the proper equation for the acid-base reaction between the pair. (a) nitric acid and calcium hydroxide (b) hydrochloric acid and CH3NH2 (c) hydrobromic acid and aqueous ammonia (d) perchloric acid and barium hydroxide (e) sodium hydroxide and nitrous acidarrow_forwardA 1.345-g sample of a compound of barium and oxygen was dissolved in hydrochloric acid to give a solution of barium ion, which was then precipitated with an excess of potassium chromate to give 2.012 g of barium chromate, BaCrO4. What is the formula of the compound?arrow_forwardChlorine gas was first prepared in 1774 by C. W. Scheele by oxidizing sodium chloride with manganese(IV) oxide. The reaction is NaCl(aq) + H2SO4(aq) + MnO2(s) Na2SO4(aq) + MnCl2(aq) + H2O(l) + Cl2 (g) Balance this equation.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Acid-Base Titration | Acids, Bases & Alkalis | Chemistry | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=yFqx6_Y6c2M;License: Standard YouTube License, CC-BY