Concept explainers
a)
Interpretation: Number of moles and number of ions of each type in
Concept introduction:Ionic compounds represent substance that is composed of charged ions. They are kept together by electrostatic forces. Ionic substances and electrolytes such as acid or base release ions if they are dissolved in water. These ions get separated. Positive ions of ionic compound get attracted towards negative part of water and vice-versa.
Molarity is one of the most commonly used concentration terms to determine concentration of any species. The expression for molarity of solution is as follows:
a)
Answer to Problem 4.15P
Number of molesof
Explanation of Solution
Expression to calculate moles of
Volume of solution is
Molarity of
Substitute the value in above equation.
Dissociation reaction of magnesium chloride is as follows:
According to reaction, 1 mole of
Moles of
Numbers of
Numbers of
b)
Interpretation: Number of moles and number of ions of each type in
Concept introduction:Ionic compounds represent substance that is composed of charged ions. They are kept together by electrostatic forces. Ionic substances and electrolytes such as acid or base release ions if they are dissolved in water. These ions get separated. Positive ions of ionic compound get attracted towards negative part of water and vice-versa.
Molarity is one of the most commonly used concentration terms to determine concentration of any species. The expression for molarity of solution is as follows:
b)
Answer to Problem 4.15P
Number of molesof
Explanation of Solution
Expression to calculate mass of
Volume of solution is
Density of
Substitute the value in above equation.
Moles of
Dissociation reaction of
According to reaction 1 mole of
Moles of
Numbers of
Numbers of
c)
Interpretation: Number of moles and number of ions of each type in
Concept introduction:Ionic compounds represent substance that is composed of charged ions. They are kept together by electrostatic forces. Ionic substances and electrolytes such as acid or base release ions if they are dissolved in water. These ions get separated. Positive ions of ionic compound get attracted towards negative part of water and vice-versa.
Molarity is one of the most commonly used concentration terms to determine concentration of any species. The expression for molarity of solution is as follows:
c)
Answer to Problem 4.15P
Number of molesof
Explanation of Solution
Total number of formula unit of
Dissociation reaction of
According to reaction 1 formula unit of
Moles of
Want to see more full solutions like this?
Chapter 4 Solutions
Principles of General Chemistry
- Twenty-five mL of a 0.388 M solution of Na2SO4 is mixed with 35.3 mL of 0.229 M Na2SO4. What is the molarity of the resulting solution? Assume that the volumes are additive.arrow_forward3.61 Calculate the molarity of each of the following solutions. (a) 1.45 mol HCl in 250. mL of solution (b) 14.3 mol NaOH in 3.4 L of solution (c) 0.341 mol KCl in 100.0 mL of solution (d) 250 mol NaNO3 in 350 L of solutionarrow_forward3.64 How many grams of solute are present in each of these solutions? (a) 37.2 mL ofO.471 M HBr (b) 113.0 L of 1.43 M Na2CO3 (c) 212 mL of 6.8 M CH3COOH (d) 1.3 × 10-4 L of 1.03 M H2S03arrow_forward
- What is the difference between a solute and a solvent?arrow_forward39. Standard solutions of calcium ion used to test for water hardness are prepared by dissolving pure calcium carbonate. CaCO3, in dilute hydrochloric acid. A 1.745-g sample of CaCO3 is placed in a 250.O-mL volumetric flask and dissolved in HCI. Then the solution is diluted to the calibration mark of the volumetric flask. Calculate the resulting molarity of calcium ion.arrow_forwardSodium chloride is used in intravenous solutions for medical applications. The NaCl concentration in such solutions must be accurately known and can be assessed by reacting the solution with an experimentally determined volume of AgNO3 solution of known concentration. The net ionic equation is Ag+(aq)+Cl(aq)AgCl(s) Suppose that a chemical technician uses 19.3 mL of 0.200-M AgNO3 to convert all the NaCl in a 25.0-mL sample of an intravenous solution to AgCl. Calculate the molarity of NaCl in the solution.arrow_forward
- A student weighs out a 4.80-g sample of aluminum bromide, transfers it to a 100-mL volumetric flask, adds enough water to dissolve it, and then adds water to the 100-mL mark. What is the molarity of aluminum bromide in the resulting solution?arrow_forwardPotassium hydrogen phthalate, KHC8H4O4, is used to standardize solutions of bases. The acidic anion reacts with bases according to this net ionic equation: A 0.902-g sample of potassium hydrogen phthalate requires 26.45 mL NaOH to react; determine the molarity of the NaOH.arrow_forwardLactic acid, C3H6O3 is the acid present in sour milk. A 0.100-g sample of pure lactic acid requires 12.95 mL of 0.0857 M sodium hydroxide for complete reaction. How many moles of hydroxide ion are required to neutralize one mole of lactic acid?arrow_forward
- A noncarbonated soft drink contains an unknown amount of citric acid, H3C6H5O7. lf 100. mL of the soft drink requires 33.51 mL of 0.0102 M NaOH to neutralize the citric add completely, what mass of citric acid does the soft drink contain per 100. mL? The reaction of citric acid and NaOH is H3C6H5O7(aq) + 3 NaOH(aq) Na3C6H5O7(aq) + 3 H2O()arrow_forwardonsider separate aqueous solutions of HCI and H2S04 with the same concentrations in terms of molarity. You wish to neutralize au aqueous solution of’ NaOH. For which acid solution would you need to add more volume (in mL) to neutralize the base? The HCI solution. The H2SO4 solution. You need to know the acid concentrations to answer this question. You need to know the volume and concentration of’ the NaOH solution to answer this question. c and d plain your answer.arrow_forwardWhat volume of 0.250 M HCI is required to neutralize each of the following solutions? a. 25.0 mL of 0.103 M sodium hydroxide, NaOH b. 50.0 mL of 0.00501 M calcium hydroxide, Ca(OH)2 c. 20.0 mL of 0.226 M ammonia, NH3 d. 15.0 mL of 0.0991 M potassium hydroxide, KOHarrow_forward
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning