Principles of General Chemistry
3rd Edition
ISBN: 9780073402697
Author: SILBERBERG, Martin S.
Publisher: McGraw-Hill College
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.89P
(a)
Interpretation Introduction
Interpretation: The percent yield of ZnS needs to be determined.
Concept Introduction: The number of moles can be calculated as follows:
Here, m is mass and M is molar mass.
(b)
Interpretation Introduction
Interpretation: The volume of carbon dioxide produced from 1 g of the baking powder needs to be determined.
Concept Introduction: The ideal gas equation is as follows:
Here, P is pressure, V is volume, n is number of moles, R is Universal gas constant and T is temperature.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Barium chloride + sodium carbonate
A 0.2088 g sample of primary-standard-grade sodium carbonate, Na₂CO₃ (105.99 g/mol) was dissolved in water and diluted to 100.00 mL in a volumetric flask. A 30.00-mL portion of this solution was used to standardize a hydrochloric acid (HCl) solution based on the following reaction: CO₃²⁻ + 2H⁺ → H₂O + CO₂. If 36.09 mL of the HCl solution was used to reach the end point, what is the molarity of the HCl?
Consider the precipitation reaction that takes place when a water solution
of aluminum nitrate, Al(NO3)3, is added to a water solution of potassium phosphate, K3PO4.
Write a balanced equation for this reaction.
What is the maximum mass of aluminum phosphate that will precipitate
from a solution prepared by adding an excess of an Al(NO3)3 solution to
50.00 mL of 1.525 M K3PO4?
Chapter 4 Solutions
Principles of General Chemistry
Ch. 4 - (Sample Problems 4.1 and 4.2) 4.1 What two factors...Ch. 4 - (Sample Problems 4.1 and 4.2) 4.2 What must be...Ch. 4 - What occurs on the molecular level when an ionic...Ch. 4 - Which of the following scenes best represents how...Ch. 4 - Which of the following scenes best represents a...Ch. 4 - Why are some ionic compounds soluble in water and...Ch. 4 - Prob. 4.7PCh. 4 - Is each of the following very soluble in water?...Ch. 4 - Is each of the following very soluble in water?...Ch. 4 - Does an aquesous solution of each of the following...
Ch. 4 - Does an aquesous solution of each of the following...Ch. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - How many moles and how many ions of each type are...Ch. 4 - Prob. 4.15PCh. 4 - How many moles of H+ ions are present in the...Ch. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Use Table 4.1 to determine which of the following...Ch. 4 - The beakers represent the aqueous reaction of...Ch. 4 - Complete the following precipitation reactions...Ch. 4 - Complete the following precipitation reactions...Ch. 4 - When each of the following pairs of aqueous...Ch. 4 - When each of the following pairs of aqueous...Ch. 4 - If 38.5 mL of Iead(II) nitrate soIution reacts...Ch. 4 - If 25.0 mL of silver nitrate soIution reacts with...Ch. 4 - With ions shown as spheres and solvent molecules...Ch. 4 - The precipitation reaction between 25.0 mL of a...Ch. 4 - The mass percent of Cl- in a seawater sample is...Ch. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Name three common weak acids. (b) Name one common...Ch. 4 - The net ionic equation for the aqueous...Ch. 4 - Prob. 4.38PCh. 4 - Complete the following acid-base reactions with...Ch. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - An auto mechnaic spills 88 mL of 2.60MH2SO4...Ch. 4 - Prob. 4.45PCh. 4 - An unknown amount of acid can often be determined...Ch. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Give the oxidation number of sulfur in the...Ch. 4 - Give the oxidation number of arsenic in the...Ch. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Give the oxidation number of chromium in the...Ch. 4 - Prob. 4.56PCh. 4 - Identify the oxidizing and reducing agents in the...Ch. 4 - Prob. 4.58PCh. 4 - Identify the oxidizing and reducing agents in the...Ch. 4 - Prob. 4.60PCh. 4 - Prob. 4.61PCh. 4 - Prob. 4.62PCh. 4 - Which of the types of reactions discussed in...Ch. 4 - Prob. 4.64PCh. 4 - Prob. 4.65PCh. 4 - Predict the product(s) and write a balanced...Ch. 4 - Prob. 4.67PCh. 4 - Predict the product(s) and write a balanced...Ch. 4 - Predict the product(s) and write a balanced...Ch. 4 - How many grams of O2 can be prepared from the...Ch. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Before are welding was developed, a displacement...Ch. 4 - Nutritional biochemisis have known for decades...Ch. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Prob. 4.81PCh. 4 - Prob. 4.82PCh. 4 - For the following aqueous reactions, complete and...Ch. 4 - Prob. 4.84PCh. 4 - Prob. 4.85PCh. 4 - Prob. 4.86PCh. 4 - Prob. 4.87PCh. 4 - Prob. 4.88PCh. 4 - Prob. 4.89PCh. 4 - Prob. 4.90PCh. 4 - The active compound in Pepto-Bismol contains C, H,...Ch. 4 - Two aqueous solutions contain the ions indicated...Ch. 4 - In 1997 and 2009, at United Nations conferences on...Ch. 4 - Prob. 4.94PCh. 4 - Prob. 4.95PCh. 4 - Prob. 4.96PCh. 4 - Prob. 4.97P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The reaction of elemental phosphorus and excess oxygen produces P4O10. Name the compound. (a) phosphorus oxide (b) phosphoric acid (c) phosphorus decaoxide (d) tetraphosphorus decaoxidearrow_forward4.48 Elemental phosphorous is used in the semiconductor industry. It can be obtained from an ore called fluoroapatite via reaction with SiO2 and C: 4Ca5( PO4)3F+18SiO2+30C3P4+30CO+18CaSiO3+2CaF2 Suppose a particular semiconductor production plant requires 1500 kg of P4. If the recovery of P4 from this reaction is 73% efficient, what mass of fluoroapatite is needed?arrow_forwardThe carbon dioxide exhaled in the breath of astronauts is often removed from the spacecraft by reaction with lithium hydroxide 2LiOH(s)+CO2(g)Li2CO3(s)+H2O(l) Estimate the grams of lithium hydroxide required per astronaut per day. Assume that each astronaut requires 2.50 103 kcal of energy per day. Further assume that this energy can be equated to the heat of combustion of a quantity of glucose, C6H12O6, to CO2(g) and H2O(l). From the amount of glucose required to give 2.50 103 kcal of heat, calculate the amount of CO2 produced and hence the amount of LiOH required. The H for glucose(s) is 1273 kJ/mol.arrow_forward
- What is the molarity of a solution of sodium hydrogen sulfate that is prepared by dissolving 9.21 g NaHSO4 in enough water to form 2.00-L solution? What is the molarity of each ion in the solution?arrow_forwardAzurite is a copper-containing mineral that often forms beautiful crystals. Its formula is Cu3(CO3)2(OH)2. Write balanced equation for the reaction of this mineral with hydrochloric acid.arrow_forwardWrite balanced net ionic equations for the following reactions in acid solution. (a) Liquid hydrazine reacts with an aqueous solution of sodium bromate. Nitrogen gas and bromide ions are formed. (b) Solid phosphorus (P4) reacts with an aqueous solution of nitrate to form nitrogen oxide gas and dihydrogen phosphate (H2PO4-) ions. (c) Aqueous solutions of potassium sulfite and potassium permanganate react. Sulfate and manganese(II) ions are formed.arrow_forward
- Ethanol, C2H5OH, is a gasoline additive that can be produced by fermentation of glucose. C6H12O62C2H5OH+2CO2 (a) Calculate the mass (g) of ethanol produced by the fermentation of 1.000 lb glucose. (b) Gasohol is a mixture of 10.00 mL ethanol per 90.00 mL gasoline. Calculate the mass (in g) of glucose required to produce the ethanol in 1.00 gal gasohol. Density of ethanol = 0.785 g/mL. (c) By 2022, the U. S. Energy Independence and Security Act calls for annual production of 3.6 1010 gal of ethanol, no more than 40% of it produced by fermentation of corn. Fermentation of 1 ton (2.2 103 lb) of corn yields approximately 106 gal of ethanol. The average corn yield in the United States is about 2.1 105 lb per 1.0 105 m2. Calculate the acreage (in m2) required to raise corn solely for ethanol production in 2022 in the United States.arrow_forwardCalculate the molarity of AgNO3 in a solution prepared by dissolving 1.44 g AgNO3 in enough water to form 1.00 L solution.arrow_forwardNitric acid is produced commercially by the Ostwald process, represented by the following equations: 4NH3(g)+5O24NO(g)+6H2O(g)2NO(g)+O2(g)2NO2(g)3NO2(g)+H2O(l)2HNO3(aq)+NO(g) What mass of NH3 must be used to produce 1.0 106 kg HNO3 by the Ostwald process? Assume 100% yield in each reaction, and assume that the NO produced in the third step is not recycled.arrow_forward
- The setting of Portland cement (used in sidewalks, for example) by reacting with water involves severalchemical reactions. One of these can reasonably be modeled by the following chemical reaction: 2 Ca3SiO5(s) + 6 H2O(l) ⟶⟶ Ca3Si2O7•3H2O(s) + 3 Ca(OH)2(s) A) Calculate the number of moles of Ca3SiO5 in the bag. B) Calculate the number of moles of water required. C) Calculate the mass of water required in kgarrow_forwardA method used by the U.S. Environmental Protection Agency(EPA) for determining the concentration of ozone in air is to passthe air sample through a “bubbler” containing sodium iodide,which removes the ozone according to the following equation:O3(g) + 2 NaI(aq) + H2O(l)------->O2(g) + I2(s) + 2 NaOH(aq)(a) How many moles of sodium iodide are needed to remove5.95 x 10-6 mol of O3? (b) How many grams of sodium iodideare needed to remove 1.3 mg of O3?arrow_forward2. (Balance the equation) FeCl+NaOH>Fe(OH);+Naclarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY