Concept explainers
a)
Interpretation: Moles of
Concept introduction: Solution is made by two portions, solute and solvent. Solute represents substance present in small quantity while solvent represents substance that dissolves solute.
Ionic compounds represent substance that is composed of charged ions. They are kept together by electrostatic forces. Ionic substances and electrolytes such as acid or base release ions if they are dissolved in water. These ions get separated. Positive ions of ionic compound get attracted towards negative part of water and vice-versa.
b)
Interpretation: Moles of
Concept introduction: Solution is made by two portions, solute and solvent. Solute represents substance present in small quantity while solvent represents substance that dissolves solute.
Ionic compounds represent substance that is composed of charged ions. They are kept together by electrostatic forces. Ionic substances and electrolytes such as acid or base release ions if they are dissolved in water. These ions get separated. Positive ions of ionic compound get attracted towards negative part of water and vice-versa.
c)
Interpretation: Moles of
Concept introduction: Solution is made by two portions, solute, and solvent. Solute represents substance present in small quantity while solvent represents substance that dissolves solute.
Ionic compounds represent substance that is composed of charged ions. They are kept together by electrostatic forces. Ionic substances and electrolytes such as acid or base release ions if they are dissolved in water. These ions get separated. Positive ions of ionic compound get attracted towards negative part of water and vice-versa.
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
Principles of General Chemistry
- What volume of 0.250 M HCI is required to neutralize each of the following solutions? a. 25.0 mL of 0.103 M sodium hydroxide, NaOH b. 50.0 mL of 0.00501 M calcium hydroxide, Ca(OH)2 c. 20.0 mL of 0.226 M ammonia, NH3 d. 15.0 mL of 0.0991 M potassium hydroxide, KOHarrow_forwardTwenty-five mL of a 0.388 M solution of Na2SO4 is mixed with 35.3 mL of 0.229 M Na2SO4. What is the molarity of the resulting solution? Assume that the volumes are additive.arrow_forwardWhen 10. L of water is added to 3.0 L of 6.0 M H2SO4, what is the molarity of the resulting solution? Assume the volumes are additive.arrow_forward
- Sodium chloride is used in intravenous solutions for medical applications. The NaCl concentration in such solutions must be accurately known and can be assessed by reacting the solution with an experimentally determined volume of AgNO3 solution of known concentration. The net ionic equation is Ag+(aq)+Cl(aq)AgCl(s) Suppose that a chemical technician uses 19.3 mL of 0.200-M AgNO3 to convert all the NaCl in a 25.0-mL sample of an intravenous solution to AgCl. Calculate the molarity of NaCl in the solution.arrow_forward3.61 Calculate the molarity of each of the following solutions. (a) 1.45 mol HCl in 250. mL of solution (b) 14.3 mol NaOH in 3.4 L of solution (c) 0.341 mol KCl in 100.0 mL of solution (d) 250 mol NaNO3 in 350 L of solutionarrow_forwardConsider several 25.00-mL solutions of perchloric acid. What is the molarity of the acid solution neutralized by (a) 17.25 mL of 0.3471 M ethylamine (C2H5NH2). (b) 14.17 g of strontium hydroxide. (c) 41.73 mL of an 18% (by mass) solution of ammonia (d=0.9295g/mL).arrow_forward
- 3.64 How many grams of solute are present in each of these solutions? (a) 37.2 mL ofO.471 M HBr (b) 113.0 L of 1.43 M Na2CO3 (c) 212 mL of 6.8 M CH3COOH (d) 1.3 × 10-4 L of 1.03 M H2S03arrow_forwardA student weighs out a 4.80-g sample of aluminum bromide, transfers it to a 100-mL volumetric flask, adds enough water to dissolve it, and then adds water to the 100-mL mark. What is the molarity of aluminum bromide in the resulting solution?arrow_forwardWhat is the difference between a solute and a solvent?arrow_forward
- 3.86 When a solution is diluted, solvent is added but solute is not. Explain how this idea leads to the equation frequently used in dilution calculations, M1V1= M2V2.arrow_forwardA 25.0-mL sample of sodium sulfate solution was analyzed by adding an excess of barium chloride solution to produce barium sulfate crystals, which were filtered from the solution. Na2SO4(aq)+BaCl2(aq)2NaCl(aq)+BaSO4(s) If 5.719 g of barium sulfate was obtained, what was the molarity of the original Na2SO4 solution?arrow_forwardConsider the following generic equation: H+(aq)+ B(aq)HB(aq)For which of the following pairs would this be the correct prototype equation for the acid-base reaction in solution? If it is not correct, write the proper equation for the acid-base reaction between the pair. (a) nitric acid and calcium hydroxide (b) hydrochloric acid and CH3NH2 (c) hydrobromic acid and aqueous ammonia (d) perchloric acid and barium hydroxide (e) sodium hydroxide and nitrous acidarrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning