College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 19P
A car has a maximum acceleration of 5.0 m/s2 What will the maximum acceleration be if the car is towing another car of the same mass?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A net force of 6.0 N causes an object to accelerate at 1.0 m/s2. What force will give this object an acceleration of 3.0 m/s2 ?
You want to hang an object from the ceiling of an elevator that has a maximum acceleration of 4.0 m/s2.
a) If you hang the object with a fishing line that supports 45 N of force, what is the maximum mass the object can have if the line is not to break? Please answer in units of kg.
A driver in a 1000 kg car traveling at 24 m/s slams on the breaks and skids to a stop. The coefficient of kinetic friction between the tires and the road is 0.80.
a) What is the acceleration (deceleration) of the car?
b) How long will the skid marks be (how far will the car go before stopping)?
Chapter 4 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 4 - If an object is not moving, does that mean that...Ch. 4 - An object moves in a straight line at a constant...Ch. 4 - If you know all of the forces acting on a moving...Ch. 4 - Three arrows are shot horizontally. They have left...Ch. 4 - A carpenter wishes to tighten the heavy head of...Ch. 4 - Internal injuries in vehicular acci-dents may be...Ch. 4 - Heres a great everyday use of the physics...Ch. 4 - Suppose you are an astronaut in deep space, far...Ch. 4 - Jonathan accelerates away from a stop sign. His...Ch. 4 - Normally, jet engines push air out the back of the...
Ch. 4 - If you are standing still, the upward normal force...Ch. 4 - Josh and Taylor, standing face-to-face on...Ch. 4 - A person sits on a sloped hillside. Is it ever...Ch. 4 - Walking without slipping requires a static...Ch. 4 - Figure 4.30 b showed a situation in which the...Ch. 4 - Alyssa pushes to the right on a filing cabinet;...Ch. 4 - A very smart three-year-old child is given a wagon...Ch. 4 - The tire on this drag racer is severely twisted:...Ch. 4 - Suppose that, while in a squatting position, you...Ch. 4 - A block has acceleration a when pulled by a...Ch. 4 - A 5.0 kg block has an acceleration of 0.20 m/s2...Ch. 4 - Tennis balls experience a large drag force. A...Ch. 4 - A group of students is making model cars that will...Ch. 4 - A person gives a box a shove so that it slides up...Ch. 4 - A person is pushing horizontally on a box with a...Ch. 4 - As shown in the chapter, scallops use jet...Ch. 4 - Dave pushes his four-year-old son Thomas across...Ch. 4 - Figure Q4.29 shows block A sitting on top of block...Ch. 4 - Whiplash injuries during an automobile accident...Ch. 4 - An automobile has a head-on collision. A passenger...Ch. 4 - In a head-on collision, an infant is much safer in...Ch. 4 - Problems 4 through 6 show two forces acting on an...Ch. 4 - Problems 4 through 6 show two forces acting on an...Ch. 4 - Problems 4 through 6 show two forces acting on an...Ch. 4 - A mountain climber is hanging from a vertical...Ch. 4 - You look up from your textbook and observe a...Ch. 4 - A baseball player is sliding into second base....Ch. 4 - A jet plane is speeding down the runway during...Ch. 4 - A skier is sliding down a 15 slope. Friction is...Ch. 4 - A falcon is hovering above the ground, then...Ch. 4 - Figure P4.13 shows an acceleration-versus-force...Ch. 4 - A constant force applied to object A causes it to...Ch. 4 - A compact car has a maximum acceleration of 4.0...Ch. 4 - A constant force is applied to an object, causing...Ch. 4 - A constant force is applied to an object, causing...Ch. 4 - A man pulling an empty wagon causes it to...Ch. 4 - A car has a maximum acceleration of 5.0 m/s2 What...Ch. 4 - Scallops eject water from their shells to provide...Ch. 4 - Figure P4.21 shows an objects...Ch. 4 - In t-ball, young players use a bat to hit a...Ch. 4 - Two children fight over a 200 g stuffed bear. The...Ch. 4 - A 1500 kg car is traveling along a straight road...Ch. 4 - The motion of a very massive object can be...Ch. 4 - Very small forces can have tremendous effects on...Ch. 4 - Problems 27 through 29 show a free-body diagram....Ch. 4 - Problems 27 through 29 show a free-body diagram....Ch. 4 - Problems 27 through 29 show a free-body diagram....Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Three ice skaters, numbered 1, 2, and 3, stand in...Ch. 4 - A girl stands on a sofa. Identify all the...Ch. 4 - A car is skidding to a stop on a level stretch of...Ch. 4 - Squid use jet propulsion for rapid escapes. A...Ch. 4 - Redraw the motion diagram shown in Figure P4.43,...Ch. 4 - Redraw the motion diagram shown in Figure P4.44,...Ch. 4 - Redraw the motion diagram shown in Figure P4.45,...Ch. 4 - Redraw the motion diagram shown in Figure P4.46,...Ch. 4 - A student draws the flawed free-body diagram shown...Ch. 4 - A student draws the flawed free-body diagram shown...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - A bag of groceries is on the back seat of your car...Ch. 4 - A car has a mass of 1500 kg. If the driver applies...Ch. 4 - A rubber ball bounces. Wed like to understand how...Ch. 4 - If a car stops suddenly, you feel thrown forward....Ch. 4 - The fastest pitched baseball was clocked at 46...Ch. 4 - The froghopper, champion leaper of the insect...Ch. 4 - A beach ball is thrown straight up, and some time...Ch. 4 - If your car is stuck in the mud and you dont have...Ch. 4 - If your car is stuck in the mud and you don't have...Ch. 4 - If your car is stuck in the mud and you don't have...Ch. 4 - If your car is stuck in the mud and you don't have...
Additional Science Textbook Solutions
Find more solutions based on key concepts
5. When the phenotype of heterozygotes is intermediate between the phenotypes of the two homozygotes, this patt...
Biology: Life on Earth (11th Edition)
Which one of the following is not a fuel produced by microorganisms? a. algal oil b. ethanol c. hydrogen d. met...
Microbiology: An Introduction
Using the South Atlantic as an example, label the beginning of the normal polarity period C that began 2 millio...
Applications and Investigations in Earth Science (9th Edition)
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
What color of light is least effective in driving photosynthesis? Explain.
Campbell Biology (11th Edition)
49. A 25.00-mL sample of an solution of unknown concentration is titrated with a 0.1322 M KOH solution. A volu...
Introductory Chemistry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) A cat with a mass of 850 kg in moving to the right with a constant speed of 1.44 m/s. What is the total force on the cat ? (b) What is the total force on the cat if it is moving to the left?arrow_forwardAn elevator filled with passengers has a mass of 1.70103kg . (a) The elevator accelerates upward from rest at a rate of 1.20m/s2for 1.50 s. Calculate the tension in the cable supporting the elevator. (b) The elevator continues upward at constant velocity for 8.50 s. What is the tension in the cable during this time? (c) The elevator decelerates at a rate of 0.600 in/s2 for 0.600m/s2 3.00 s. What is the tension in the cable during deceleration? (d) How high has the elevator moved above its original starting point, and what is its final velocity?arrow_forwardAn object of mass m = 5.00 kg, attached to a spring scale, rests on a frictionless, horizontal surface as shown in Figure P6.14. The spring scale, attached to the front end of a boxcar, reads zero when the car is at rest. (a) Determine the acceleration of the car if the spring scale has a constant reading of 18.0 N when the car is in motion. (b) What constant reading will the spring scale show if the car moves with constant velocity? Describe the forces on the object as observed (c) by someone in the car and (d) by someone at rest outside the car. Figure P6.14arrow_forward
- (a) Give an example of different net external forces acting on the same system to produce different accelerations. (b) Give an example of the same net external force acting on systems of different masses, producing different accelerations. (c) What law accurately describes both effects? State it in words and as an equation.arrow_forward. As a baseball is being caught, its speed goes from 30 to 0 m/s in about 0.005 s. Its mass is 0.145 kg. (a) What is the baseball’s acceleration in m/s and in Ws? (b) What is the size of the force acting on it?arrow_forwardTwo blocks, each of mass m, are hung from the ceiling of an elevator as in Figure P4.33. The elevator has an upward acceleration a. The strings have negligible mass. (a) Find the tensions T1 and T2 in the upper and lower strings in terms of m, a, and g. (b) Compare the two tensions and determine which string would break first if a is made sufficiently large. (c) What are the tensions if the cable supporting the elevator breaks? Figure P4.33 Problems 33 and 34.arrow_forward
- A 3.00-kg block starts from rest at the top of a 30.0 incline and slides a distance of 2.00 m down the incline in 1.50 s. Find (a) the magnitude of the acceleration of the block, (b) the coefficient of kinetic friction between block and plane, (c) the friction force acting on the block, and (d) the speed of the block after it has slid 2.00 m.arrow_forwardA car accelerates down a hill (Fig. P4.57), going from rest to 30.0 m/s in 6.00 s. A toy inside the car hangs by a string from the cars ceiling. The ball in the figure represents the toy, of mass 0.100 kg. The acceleration is such that the string remains perpendicular to the ceiling. Determine (a) the angle and (b) the tension in the string. Figure P4.57arrow_forwardAn object experiences no acceleration. Which of the following cannot be true for the object? (a) A single force acts on the object. (b) No forces act on the object. (c) Forces act on the object, but the forces cancel.arrow_forward
- An object of mass m1 = 5.00 kg placed on a frictionless, horizontal table is connected to a string that passes over a pulley and then is fastened to a hanging object of mass m2 = 9.00 kg as shown in Figure P4.28. (a) Draw free-body diagrams of both objects. Find (b) the magnitude of the acceleration of the objects and (c) the tension in the string. Figure P4.28arrow_forwardThree objects are connected on a table as shown in Figure P5.14. The coefficient of kinetic friction between the block of mass m2 and the table is 0.350. The objects have masses of m1 = 4.00 kg, m2 = 1.00 kg, and m3 = 2.00 kg, and the pulleys are frictionless. (a) Draw a free-body diagram of each object. (b) Determine the acceleration of each object, including its direction. (c) Determine the tensions in the two cords. What If? (d) If the tabletop were smooth, would the tensions increase, decrease, or remain the same? Explain. Figure P5.14arrow_forwardIn Figure P4.35, the man and the platform together weigh 950 N. The pulley can be modeled as frictionless. Determine how hard the man has to pull on the rope to lift himself steadily upward above the ground. (Or is it impossible? If so, explain why.) Figure P4.35arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY