College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 17CQ
Alyssa pushes to the right on a filing cabinet; the friction force from the floor pushes on it to the left. Because the cabinet doesn’t move, these forces have the same magnitude. Do they form an action/reaction pair? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two cars collide head on. At every moment during collision, the magnitude of the force the first car exerts on the second is exactly equal in magnitude but in the opposite direction. This is an example of:
CHoices:
Two cars collide head on. At every moment during collision, the magnitude of the force the first car exerts on the second is exactly equal in magnitude but in the opposite direction. This is an example of:
A tennis player hits the ball with her racket. Compare the force exerted by the racket on the ball to that exerted by the ball on the racket during the collision between the racket and the ball. Is one force larger than the other or are they equal in magnitude to each other? Does this relationship of the magnitudes of the two forces change at any time during the collision? Explain.
A bowling ball rolls down the alley and hits a pin. Compare the force exerted by the ball on the pin to the force exerted by the pin on the ball during the collision between the ball and the pin. Is one force larger than the other or are they equal in magnitude to each other? Does this relationship of the magnitudes of the two forces change at any time during the collision? Explain.
Chapter 4 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 4 - If an object is not moving, does that mean that...Ch. 4 - An object moves in a straight line at a constant...Ch. 4 - If you know all of the forces acting on a moving...Ch. 4 - Three arrows are shot horizontally. They have left...Ch. 4 - A carpenter wishes to tighten the heavy head of...Ch. 4 - Internal injuries in vehicular acci-dents may be...Ch. 4 - Heres a great everyday use of the physics...Ch. 4 - Suppose you are an astronaut in deep space, far...Ch. 4 - Jonathan accelerates away from a stop sign. His...Ch. 4 - Normally, jet engines push air out the back of the...
Ch. 4 - If you are standing still, the upward normal force...Ch. 4 - Josh and Taylor, standing face-to-face on...Ch. 4 - A person sits on a sloped hillside. Is it ever...Ch. 4 - Walking without slipping requires a static...Ch. 4 - Figure 4.30 b showed a situation in which the...Ch. 4 - Alyssa pushes to the right on a filing cabinet;...Ch. 4 - A very smart three-year-old child is given a wagon...Ch. 4 - The tire on this drag racer is severely twisted:...Ch. 4 - Suppose that, while in a squatting position, you...Ch. 4 - A block has acceleration a when pulled by a...Ch. 4 - A 5.0 kg block has an acceleration of 0.20 m/s2...Ch. 4 - Tennis balls experience a large drag force. A...Ch. 4 - A group of students is making model cars that will...Ch. 4 - A person gives a box a shove so that it slides up...Ch. 4 - A person is pushing horizontally on a box with a...Ch. 4 - As shown in the chapter, scallops use jet...Ch. 4 - Dave pushes his four-year-old son Thomas across...Ch. 4 - Figure Q4.29 shows block A sitting on top of block...Ch. 4 - Whiplash injuries during an automobile accident...Ch. 4 - An automobile has a head-on collision. A passenger...Ch. 4 - In a head-on collision, an infant is much safer in...Ch. 4 - Problems 4 through 6 show two forces acting on an...Ch. 4 - Problems 4 through 6 show two forces acting on an...Ch. 4 - Problems 4 through 6 show two forces acting on an...Ch. 4 - A mountain climber is hanging from a vertical...Ch. 4 - You look up from your textbook and observe a...Ch. 4 - A baseball player is sliding into second base....Ch. 4 - A jet plane is speeding down the runway during...Ch. 4 - A skier is sliding down a 15 slope. Friction is...Ch. 4 - A falcon is hovering above the ground, then...Ch. 4 - Figure P4.13 shows an acceleration-versus-force...Ch. 4 - A constant force applied to object A causes it to...Ch. 4 - A compact car has a maximum acceleration of 4.0...Ch. 4 - A constant force is applied to an object, causing...Ch. 4 - A constant force is applied to an object, causing...Ch. 4 - A man pulling an empty wagon causes it to...Ch. 4 - A car has a maximum acceleration of 5.0 m/s2 What...Ch. 4 - Scallops eject water from their shells to provide...Ch. 4 - Figure P4.21 shows an objects...Ch. 4 - In t-ball, young players use a bat to hit a...Ch. 4 - Two children fight over a 200 g stuffed bear. The...Ch. 4 - A 1500 kg car is traveling along a straight road...Ch. 4 - The motion of a very massive object can be...Ch. 4 - Very small forces can have tremendous effects on...Ch. 4 - Problems 27 through 29 show a free-body diagram....Ch. 4 - Problems 27 through 29 show a free-body diagram....Ch. 4 - Problems 27 through 29 show a free-body diagram....Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Three ice skaters, numbered 1, 2, and 3, stand in...Ch. 4 - A girl stands on a sofa. Identify all the...Ch. 4 - A car is skidding to a stop on a level stretch of...Ch. 4 - Squid use jet propulsion for rapid escapes. A...Ch. 4 - Redraw the motion diagram shown in Figure P4.43,...Ch. 4 - Redraw the motion diagram shown in Figure P4.44,...Ch. 4 - Redraw the motion diagram shown in Figure P4.45,...Ch. 4 - Redraw the motion diagram shown in Figure P4.46,...Ch. 4 - A student draws the flawed free-body diagram shown...Ch. 4 - A student draws the flawed free-body diagram shown...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - A bag of groceries is on the back seat of your car...Ch. 4 - A car has a mass of 1500 kg. If the driver applies...Ch. 4 - A rubber ball bounces. Wed like to understand how...Ch. 4 - If a car stops suddenly, you feel thrown forward....Ch. 4 - The fastest pitched baseball was clocked at 46...Ch. 4 - The froghopper, champion leaper of the insect...Ch. 4 - A beach ball is thrown straight up, and some time...Ch. 4 - If your car is stuck in the mud and you dont have...Ch. 4 - If your car is stuck in the mud and you don't have...Ch. 4 - If your car is stuck in the mud and you don't have...Ch. 4 - If your car is stuck in the mud and you don't have...
Additional Science Textbook Solutions
Find more solutions based on key concepts
16. A 200 g mass attached to a horizontal spring oscillates at a frequency of 2.0 Hz. At , the mass is at and ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
Choose the best answer to each of the following. Explain your reasoning. Tycho Brahes contributions to astronom...
Cosmic Perspective Fundamentals
Body, Heal Thyself The precision of mitotic cell division is essential for repairing damaged tissues like those...
Biology: Life on Earth with Physiology (11th Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Use the key to classify each of the following described tissue types into one of the four major tissue categori...
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two teams of nine members each engage in tug-of-war. Each of the first team’s members has an average mass of 68 kg and exerts an average force of 1350 N horizontally. Each of the second team’s members has an average mass of 73 kg and exerts an average force of 1365 N horizontally. (a) What is magnitude of the acceleration of the two teams, and which team sins? (b) What is the tension in the section of rope between the teams?arrow_forwardA block of ice (m = 15.0 kg) with an attached rope is at rest on a frictionless surface. You pull the block with a horizontal force of 95.0 N for 1.54 s. a. Determine the magnitude of each force acting on the block of ice while you are pulling. b. With what speed is the ice moving after you are finished pulling? Repeat Problem 71, but this time you pull on the block at an angle of 20.0.arrow_forwardAn object of mass m = 1.00 kg is observed to have an acceleration a with a magnitude of 10.0 m/s2 in a direction 60.0 east of north. Figure P4.29 shows a view of the object from above. The force F2 acting on the object has a magnitude of 5.00 N and is directed north. Determine the magnitude and direction of the one other horizontal force F1 acting on the object. Figure P4.29arrow_forward
- A hammer drives a nail into a piece of wood. Identify an action-reaction pair. The hammer exerts a force on the nail; the nail exerts a force on the hammer. The hammer exerts a force on the nail; the hammer exerts a force on the wood. The nail exerts a force on the hammer; the hammer exerts a force on the wood. The hammer exerts a force on the nail; the wood exerts a force on the nail.arrow_forwardA 934-kg car starts from rest on a horizontal roadway and accelerates eastward for 5.00 s when it reaches a speed of 35.0 m/s. What is the average force exerted on the car during this time? kN eastwardarrow_forward75. Review Conceptual Example 16 as background for this problem. The water skier there has a mass of 73 kg. Find the magnitude of the net force acting on the skier when (a) she is accelerated from rest to a speed of 11 m/s in 8.0 s and (b) she lets go of the tow rope and glides to a halt in 21 s.arrow_forward
- A basketball player jumps as he shoots the ball. Describe the forces that are acting on the ball and on the basketball player. What are the results?arrow_forwardA 1370 kg jeep traveling at 19 m/s can be stopped in 24.0 s by gently applying the brakes. a) What is the average force exerted on the jeep in this case? b) If the driver slams on the brakes, the jeep stops in 2.10 s. What is the average force exerted on the jeep in this case? c) How much time will it take it stop if the driver coasts and lets a 300 N friction force stop the car?arrow_forwardI don't know what force is acting on. I thought it would be force of friction, but I guess I'm wrong as I didn't get a right answer.arrow_forward
- A force of magnitude F acting in the x-direction on a 2.0-kg object varies in time as shown in the figure. F(N) 3 0 1 2 3 4 5 Find the final velocity of the object if it is initially moving along the x-axis with a velocity of 2.0 m/s. O a. O b. O c. O d. O e. O f. g. Oh. t(s) 8.0 m/s 12 m/s 6.0 m/s 20 m/s 4.0 m/s None of these choices. 2.0 m/s 24 m/sarrow_forwardIn order to get an object moving, you must push harder on it than it pushes back on you. True or False? Please explain.arrow_forwardAm, = 5.03-kg block is placed on top of a m, = 10.0-kg block (figure). A horizontal force of F = 45.0 N is applied to the 10.0-kg block, and the 5.03-kg block is tied to the wall. The coefficient of kinetic friction between all moving surfaces is 0.183. m2 (a) Draw a free-body diagram for each block and identify the action-reaction forces between the blocks. (Submit a file with a maximum size of 1 MB.) Choose File no file selected This answer has not been graded yet. (b) Determine the tension in the string. (Enter the magnitude only.) N Determine the magnitude of the acceleration of the 10.0-kg block. m/s?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Drawing Free-Body Diagrams With Examples; Author: The Physics Classroom;https://www.youtube.com/watch?v=3rZR7FSSidc;License: Standard Youtube License