College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 55GP
Problems 49 through 61 describe a situation. For each problem, draw a motion diagram, a force identification diagram, and a free-body diagram.
55. A bale of hay sits on the bed of a trailer. The trailer is starting to accelerate forward, and the bale is slipping toward the back of the trailer.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A woman who weighs 602 N sits on a chair with her feet on the floor and her arms resting on the chair’s armrests. The chair weighs 100 N. Each armrest exerts an upward force of 25.0 N on her arms. The seat of the chair exerts an upward force of 500 N.
a. What force does the floor exert on her feet? Enter your answer as positive for upward direction and negative for downward direction. asnwer in N
b. What force does the floor exert on the chair? Enter your answer as positive for upward direction and negative for downward direction. answer in N
c. Consider the woman and the chair to be a single system. Let the subscripts be the following: s = woman and chair system, e = Earth, f = floor. Choose the correct FBD for this system that includes only the external forces acting on it. (OPTIONS ATTACHED)
8. A student was given the following problem: "The drawing shows a person (weight
push-ups. Find the normal force exerted by the floor on each hand and each foot, as
person holds this position."
A. To find the answer, the student drew this Free Body Diagram. F,
is the force on the hands, F, is the force on the feet and F, is the
weight of the man. What is wrong with this diagram?
B. After the student fixed the Free Body Diagram, they decided to
solve the problem by putting the pivot point at the center of
A 15 kg object rests on a table. A cord is attached to this object and also to a wall. Another object is hung from this cord as shown. The coefficient of static friction between the 15 kg object and the table is 0.27.
a) Draw the free body diagram. b) Find the maximum mass that can be hung, without movement.
Chapter 4 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 4 - If an object is not moving, does that mean that...Ch. 4 - An object moves in a straight line at a constant...Ch. 4 - If you know all of the forces acting on a moving...Ch. 4 - Three arrows are shot horizontally. They have left...Ch. 4 - A carpenter wishes to tighten the heavy head of...Ch. 4 - Internal injuries in vehicular acci-dents may be...Ch. 4 - Heres a great everyday use of the physics...Ch. 4 - Suppose you are an astronaut in deep space, far...Ch. 4 - Jonathan accelerates away from a stop sign. His...Ch. 4 - Normally, jet engines push air out the back of the...
Ch. 4 - If you are standing still, the upward normal force...Ch. 4 - Josh and Taylor, standing face-to-face on...Ch. 4 - A person sits on a sloped hillside. Is it ever...Ch. 4 - Walking without slipping requires a static...Ch. 4 - Figure 4.30 b showed a situation in which the...Ch. 4 - Alyssa pushes to the right on a filing cabinet;...Ch. 4 - A very smart three-year-old child is given a wagon...Ch. 4 - The tire on this drag racer is severely twisted:...Ch. 4 - Suppose that, while in a squatting position, you...Ch. 4 - A block has acceleration a when pulled by a...Ch. 4 - A 5.0 kg block has an acceleration of 0.20 m/s2...Ch. 4 - Tennis balls experience a large drag force. A...Ch. 4 - A group of students is making model cars that will...Ch. 4 - A person gives a box a shove so that it slides up...Ch. 4 - A person is pushing horizontally on a box with a...Ch. 4 - As shown in the chapter, scallops use jet...Ch. 4 - Dave pushes his four-year-old son Thomas across...Ch. 4 - Figure Q4.29 shows block A sitting on top of block...Ch. 4 - Whiplash injuries during an automobile accident...Ch. 4 - An automobile has a head-on collision. A passenger...Ch. 4 - In a head-on collision, an infant is much safer in...Ch. 4 - Problems 4 through 6 show two forces acting on an...Ch. 4 - Problems 4 through 6 show two forces acting on an...Ch. 4 - Problems 4 through 6 show two forces acting on an...Ch. 4 - A mountain climber is hanging from a vertical...Ch. 4 - You look up from your textbook and observe a...Ch. 4 - A baseball player is sliding into second base....Ch. 4 - A jet plane is speeding down the runway during...Ch. 4 - A skier is sliding down a 15 slope. Friction is...Ch. 4 - A falcon is hovering above the ground, then...Ch. 4 - Figure P4.13 shows an acceleration-versus-force...Ch. 4 - A constant force applied to object A causes it to...Ch. 4 - A compact car has a maximum acceleration of 4.0...Ch. 4 - A constant force is applied to an object, causing...Ch. 4 - A constant force is applied to an object, causing...Ch. 4 - A man pulling an empty wagon causes it to...Ch. 4 - A car has a maximum acceleration of 5.0 m/s2 What...Ch. 4 - Scallops eject water from their shells to provide...Ch. 4 - Figure P4.21 shows an objects...Ch. 4 - In t-ball, young players use a bat to hit a...Ch. 4 - Two children fight over a 200 g stuffed bear. The...Ch. 4 - A 1500 kg car is traveling along a straight road...Ch. 4 - The motion of a very massive object can be...Ch. 4 - Very small forces can have tremendous effects on...Ch. 4 - Problems 27 through 29 show a free-body diagram....Ch. 4 - Problems 27 through 29 show a free-body diagram....Ch. 4 - Problems 27 through 29 show a free-body diagram....Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Three ice skaters, numbered 1, 2, and 3, stand in...Ch. 4 - A girl stands on a sofa. Identify all the...Ch. 4 - A car is skidding to a stop on a level stretch of...Ch. 4 - Squid use jet propulsion for rapid escapes. A...Ch. 4 - Redraw the motion diagram shown in Figure P4.43,...Ch. 4 - Redraw the motion diagram shown in Figure P4.44,...Ch. 4 - Redraw the motion diagram shown in Figure P4.45,...Ch. 4 - Redraw the motion diagram shown in Figure P4.46,...Ch. 4 - A student draws the flawed free-body diagram shown...Ch. 4 - A student draws the flawed free-body diagram shown...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - A bag of groceries is on the back seat of your car...Ch. 4 - A car has a mass of 1500 kg. If the driver applies...Ch. 4 - A rubber ball bounces. Wed like to understand how...Ch. 4 - If a car stops suddenly, you feel thrown forward....Ch. 4 - The fastest pitched baseball was clocked at 46...Ch. 4 - The froghopper, champion leaper of the insect...Ch. 4 - A beach ball is thrown straight up, and some time...Ch. 4 - If your car is stuck in the mud and you dont have...Ch. 4 - If your car is stuck in the mud and you don't have...Ch. 4 - If your car is stuck in the mud and you don't have...Ch. 4 - If your car is stuck in the mud and you don't have...
Additional Science Textbook Solutions
Find more solutions based on key concepts
A pure-breeding tall plant producing oval fruit as described in Problem 2 is crossed to a pure-breeding short p...
Genetic Analysis: An Integrated Approach (3rd Edition)
59. Which elements are alkali metals?
a. barium
b. sodium
c. gold
d. tin
e. rubidium
Introductory Chemistry (6th Edition)
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Identify each of the following characteristics as belonging to cervical, thoracic, or lumbar vertebrae; the sac...
Human Anatomy & Physiology (2nd Edition)
Where is transitional epithelium found and what is its importance at those sites?
Anatomy & Physiology (6th Edition)
Choose the best answer to each of the following. Explain your reasoning. Which of the following was not a major...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider the baby being weighed in Figure 4.34. (a) What is the mass of the child and basket if a scale reading of 55 N is observed? (b) What is the tension T1 in the cord attaching the baby to the scale? (c) What is the tension T2 in the cord attaching the scale to the ceiling, if the scale has a mass of 0.500 kg? (d) Draw a sketch of the situation indicating the system of interest used to solve each part. The masses of the cords are negligible.arrow_forwardA car of mass 875 kg is traveling 30.0 m/s when the driver applies the brakes, which lock the wheels. The car skids for 5.60 s in the positive x-direction before coming to rest. (a) What is the cars acceleration? (b) What magnitude force acted on the car during this time? (c) How far did the car travel?arrow_forwardA worker is attempting to lift a 55.0-kg palette of bricks resting on the ground by means of a rope attached to a pulley. a. Before the worker pulls on the rope, what is the force exerted by the ground on the palette? b. The worker exerts a force of 295 N downward on his end of the rope. What is the force exerted by the ground on the palette? c. If the worker doubles the downward force, what is the force exerted by the ground on the palette?arrow_forward
- A 75.0-kg man stands on a bathroom scale in an elevator that accelerates from rest to 30.0 m/s in 2.00 s. (a) Calculate the scale reading in newtons and compare it with her weight. (The scale exerts an upward force on her equal to its reading.) (b) What Is unreasonable about the result? (c) Which premise is unreasonable, or which premises are inconsistent?arrow_forwardSuppose two children push horizontally, but in exactly opposite directions, on a third child in a wagon. The first child exerts a force of 75.0 N, the second a force of 90.0 N, and the mass of the third child plus wagon is 23.0 kg. Assume no friction in this problem. a. Draw a free-body diagram, including all forces acting on the wagon. b. Show the component equations (Fx and Fy) in terms of variables only. c. Calculate the acceleration.arrow_forwardA person lying in a bunk bed pushes a 5 kg block across the ceiling. He uses a force P of magnitude 80 N and angle θ = 70°. The coefficient of kinetic friction between the block and the ceiling is 0.4. a. Draw the free body diagram of the block. b. What is the magnitude and direction of the block’s acceleration?arrow_forward
- 2. An object of mass M-40 kg is pushed up an inclined plane with an acceleration of 0.5 m/s by a force T. The force T is parallel to the horizontal. The inclined plane forms an angle of 0-37 with the horizontal. The coefficient of kinetic friction of an object with an inclined plane is 0.20. a. Draw a free-body diagram of the forces acting on the block as it is pushed up an inclined plane. b. Determine the magnitude of the force T.arrow_forward2. A painter uses a platform/rope/pulley system to raise/lower himself along the side of a house. The painter has a mass 9M and the platform has a mass of 3M. The painter pulls downward on the rope with a force of 5Mg. (Newton's 3rd law should tell you what the tension is.) The mass and friction of the pulley is negligible. a. Draw free body diagrams (FBD) showing the forces on the system of the painter and platform, the painter, and the platform. Make sure all action reaction pairs are given the same label and masses are labeled correctly. b. What is the magnitude and direction of the acceleration of the painter in terms of M and/or g? magnitude = c. What is the magnitude and direction of the force that the painter exerts on the platform? direction (up/down) =, magnitude = direction (up/down) = . d. Assume the painter starts at rest and pulls with this tension for 3 seconds. How far has the painter traveled during this time?arrow_forwardA 10 kg crate is placed on a horizontal conveyor belt. The materials are such that μs = 0.50 and μk = 0.30.a. Draw a free-body diagram showing all the forces on the crate if the conveyer belt runs at constant speed.b. Draw a free-body diagram showing all the forces on the crate if the conveyer belt is speeding up.c. What is the maximum acceleration the belt can have without the crate slipping?d. If the acceleration of the belt exceeds the value determined in part c, what is the acceleration of the crate?arrow_forward
- Two blocks are connected by a string. The inclination of the ramp is θ, while the masses of the blocks are m1 and m2. Friction is negligible. 1. Write an equation for the magnitude of the acceleration the two blocks experience. Give your equation in terms of m1, m2, θ, and the acceleration due to gravity g. 2. Write an equation for the tension in the string in terms of m1, the acceleration due to gravity g, and the acceleration of the two blocks a.arrow_forwardA 24 kg box is tied to a 14 kg box with a horizontal rope. The coefficient of friction between the box and the floor is 0.32. You pull the larger box forward with a force of 1.8 x 102 N at an angle of 250 above horizontal. a. Calculate the acceleration of the boxes. b. Calculate the tension in the rope?arrow_forwardProblem 3: You need to push a box across carpet. The box and its contents have a mass of 75 kg. The coefficients of static friction and kinetic friction between the box and the carpet are 0.60 and 0.40, respectively. A. You push horizontally on the box with a force of 300 N. Draw a free-body diagram for this scenario. What is the magnitude of all the individual forces that act on the box? B. You now push horizontally on the box with constant force of 500 N. Draw a free body diagram that clearly labels each force. Calculate the magnitude of each individual force that acts on the box. C. What is the net force and acceleration for the box while you push with the 500 N?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY