College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 52GP
Problems 49 through 61 describe a situation. For each problem, draw a motion diagram, a force identification diagram, and a free-body diagram.
52. You’ve slammed on the brakes and your car is skidding to a stop while going down a 20° hill.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
SA3. A block is given an initial velocity of 5.00 m/s up a frictionless 20.0° incline. How far
up the incline does the block slide before coming to rest?
SA4. A man is pulling a crate along a concrete floor. This time, let's be specific. The
crate has a mass of 100 kg and the man pulls with a force of 1 250 N. The coefficient of
friction between the crate and the floor is 0.2. What is the acceleration of the crate?
SA5. A horizontal force of 80 N is used to pull a 20 N wooden box moving toward the right
along a horizontal, wood surface as shown.
Calculate the magnitude of the frictional force acting on the box.
Determine the magnitude of the force acting on the box.
Determine the mass of the box.
Calculate the magnitude of the acceleration of the box.
Problem 3: You need to push a box across carpet. The box and its contents have a mass of 75 kg. The
coefficients of static friction and kinetic friction between the box and the carpet are 0.60 and 0.40,
respectively.
A. You push horizontally on the box with a force of 300 N. Draw a free-body diagram for this
scenario. What is the magnitude of all the individual forces that act on the box?
B. You now push horizontally on the box with constant force of 500 N. Draw a free body diagram
that clearly labels each force. Calculate the magnitude of each individual force that acts on the
box.
C. What is the net force and acceleration for the box while you push with the 500 N?
A 20.0 kg block is placed on an incline that makes an angle of 30.0°. A man pushes up on the block parallel to the incline to keep it from sliding down. He must apply a force of
50.0 N.
A. What is the coefficient of friction?
B. If the man lets go of the block, what is its acceleration?
C. How far will the block slide down the incline in 2.00 s?
Chapter 4 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 4 - If an object is not moving, does that mean that...Ch. 4 - An object moves in a straight line at a constant...Ch. 4 - If you know all of the forces acting on a moving...Ch. 4 - Three arrows are shot horizontally. They have left...Ch. 4 - A carpenter wishes to tighten the heavy head of...Ch. 4 - Internal injuries in vehicular acci-dents may be...Ch. 4 - Heres a great everyday use of the physics...Ch. 4 - Suppose you are an astronaut in deep space, far...Ch. 4 - Jonathan accelerates away from a stop sign. His...Ch. 4 - Normally, jet engines push air out the back of the...
Ch. 4 - If you are standing still, the upward normal force...Ch. 4 - Josh and Taylor, standing face-to-face on...Ch. 4 - A person sits on a sloped hillside. Is it ever...Ch. 4 - Walking without slipping requires a static...Ch. 4 - Figure 4.30 b showed a situation in which the...Ch. 4 - Alyssa pushes to the right on a filing cabinet;...Ch. 4 - A very smart three-year-old child is given a wagon...Ch. 4 - The tire on this drag racer is severely twisted:...Ch. 4 - Suppose that, while in a squatting position, you...Ch. 4 - A block has acceleration a when pulled by a...Ch. 4 - A 5.0 kg block has an acceleration of 0.20 m/s2...Ch. 4 - Tennis balls experience a large drag force. A...Ch. 4 - A group of students is making model cars that will...Ch. 4 - A person gives a box a shove so that it slides up...Ch. 4 - A person is pushing horizontally on a box with a...Ch. 4 - As shown in the chapter, scallops use jet...Ch. 4 - Dave pushes his four-year-old son Thomas across...Ch. 4 - Figure Q4.29 shows block A sitting on top of block...Ch. 4 - Whiplash injuries during an automobile accident...Ch. 4 - An automobile has a head-on collision. A passenger...Ch. 4 - In a head-on collision, an infant is much safer in...Ch. 4 - Problems 4 through 6 show two forces acting on an...Ch. 4 - Problems 4 through 6 show two forces acting on an...Ch. 4 - Problems 4 through 6 show two forces acting on an...Ch. 4 - A mountain climber is hanging from a vertical...Ch. 4 - You look up from your textbook and observe a...Ch. 4 - A baseball player is sliding into second base....Ch. 4 - A jet plane is speeding down the runway during...Ch. 4 - A skier is sliding down a 15 slope. Friction is...Ch. 4 - A falcon is hovering above the ground, then...Ch. 4 - Figure P4.13 shows an acceleration-versus-force...Ch. 4 - A constant force applied to object A causes it to...Ch. 4 - A compact car has a maximum acceleration of 4.0...Ch. 4 - A constant force is applied to an object, causing...Ch. 4 - A constant force is applied to an object, causing...Ch. 4 - A man pulling an empty wagon causes it to...Ch. 4 - A car has a maximum acceleration of 5.0 m/s2 What...Ch. 4 - Scallops eject water from their shells to provide...Ch. 4 - Figure P4.21 shows an objects...Ch. 4 - In t-ball, young players use a bat to hit a...Ch. 4 - Two children fight over a 200 g stuffed bear. The...Ch. 4 - A 1500 kg car is traveling along a straight road...Ch. 4 - The motion of a very massive object can be...Ch. 4 - Very small forces can have tremendous effects on...Ch. 4 - Problems 27 through 29 show a free-body diagram....Ch. 4 - Problems 27 through 29 show a free-body diagram....Ch. 4 - Problems 27 through 29 show a free-body diagram....Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Three ice skaters, numbered 1, 2, and 3, stand in...Ch. 4 - A girl stands on a sofa. Identify all the...Ch. 4 - A car is skidding to a stop on a level stretch of...Ch. 4 - Squid use jet propulsion for rapid escapes. A...Ch. 4 - Redraw the motion diagram shown in Figure P4.43,...Ch. 4 - Redraw the motion diagram shown in Figure P4.44,...Ch. 4 - Redraw the motion diagram shown in Figure P4.45,...Ch. 4 - Redraw the motion diagram shown in Figure P4.46,...Ch. 4 - A student draws the flawed free-body diagram shown...Ch. 4 - A student draws the flawed free-body diagram shown...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - A bag of groceries is on the back seat of your car...Ch. 4 - A car has a mass of 1500 kg. If the driver applies...Ch. 4 - A rubber ball bounces. Wed like to understand how...Ch. 4 - If a car stops suddenly, you feel thrown forward....Ch. 4 - The fastest pitched baseball was clocked at 46...Ch. 4 - The froghopper, champion leaper of the insect...Ch. 4 - A beach ball is thrown straight up, and some time...Ch. 4 - If your car is stuck in the mud and you dont have...Ch. 4 - If your car is stuck in the mud and you don't have...Ch. 4 - If your car is stuck in the mud and you don't have...Ch. 4 - If your car is stuck in the mud and you don't have...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Distinguish between microevolution, speciation, and macroevolution.
Campbell Essential Biology (7th Edition)
With what geologic feature are the earthquakes in the mid-Atlantic associated?
Applications and Investigations in Earth Science (9th Edition)
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
DNA sequences in manv human genes are very similar lo the sequences of corresponding genes in chimpanzees. The ...
Campbell Biology (11th Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
Write an equation that uses the products of photosynthesis as reactants and the reactants of photosynthesis as ...
Campbell Biology in Focus (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A car of mass 875 kg is traveling 30.0 m/s when the driver applies the brakes, which lock the wheels. The car skids for 5.60 s in the positive x-direction before coming to rest. (a) What is the cars acceleration? (b) What magnitude force acted on the car during this time? (c) How far did the car travel?arrow_forward(a) A cat with a mass of 850 kg in moving to the right with a constant speed of 1.44 m/s. What is the total force on the cat ? (b) What is the total force on the cat if it is moving to the left?arrow_forwardDraw a free-body diagram for the burglar, who is shown at rest while sneaking through a chimney in Figure P6.6.arrow_forward
- A 75.0-kg man stands on a bathroom scale in an elevator that accelerates from rest to 30.0 m/s in 2.00 s. (a) Calculate the scale reading in newtons and compare it with her weight. (The scale exerts an upward force on her equal to its reading.) (b) What Is unreasonable about the result? (c) Which premise is unreasonable, or which premises are inconsistent?arrow_forwardTwo teams of nine members each engage in tug-of-war. Each of the first team’s members has an average mass of 68 kg and exerts an average force of 1350 N horizontally. Each of the second team’s members has an average mass of 73 kg and exerts an average force of 1365 N horizontally. (a) What is magnitude of the acceleration of the two teams, and which team sins? (b) What is the tension in the section of rope between the teams?arrow_forwardConsider the baby being weighed in Figure 4.34. (a) What is the mass of the child and basket if a scale reading of 55 N is observed? (b) What is the tension T1 in the cord attaching the baby to the scale? (c) What is the tension T2 in the cord attaching the scale to the ceiling, if the scale has a mass of 0.500 kg? (d) Draw a sketch of the situation indicating the system of interest used to solve each part. The masses of the cords are negligible.arrow_forward
- Please Asaparrow_forward2. A painter uses a platform/rope/pulley system to raise/lower himself along the side of a house. The painter has a mass 9M and the platform has a mass of 3M. The painter pulls downward on the rope with a force of 5Mg. (Newton's 3rd law should tell you what the tension is.) The mass and friction of the pulley is negligible. a. Draw free body diagrams (FBD) showing the forces on the system of the painter and platform, the painter, and the platform. Make sure all action reaction pairs are given the same label and masses are labeled correctly. b. What is the magnitude and direction of the acceleration of the painter in terms of M and/or g? magnitude = c. What is the magnitude and direction of the force that the painter exerts on the platform? direction (up/down) =, magnitude = direction (up/down) = . d. Assume the painter starts at rest and pulls with this tension for 3 seconds. How far has the painter traveled during this time?arrow_forwardEric is driving his scooter to soccer practice. his speed is 35 mph. splat! A mouth smashes against the windshield and bug "guts" are everywhere. gross! which scenario is true? A. The windshield exert a greater force on the bug and the bug exerts on the windshield b. the bug exerts a greater force on the windshield than the windshield exerts on the bug. c. the force that the windshield exerts on the bug and the force that the bug exerts on the windshield are the same magnitude.arrow_forward
- Santa Clause is about to distribute his gifts, but his reindeer Rudolph is still sleepy. So, instead of flying they use the ground and cross a 20-m-long bridge. Starting from rest, Rudolph pulls Santa and his sleigh, with a force F 30° above the horizontal against a frictional force of 80N. 1. Draw an appropriate free body diagram to represent all the forces acting on Santa and his sleigh. 2. Suppose the combined mass of Santa, his sleigh, and his gifts is 500kg. What is the magnitude of Fif the acceleration of Santa and his sleigh is 1.5 meters per second squared? 3. How much work is done by Rudolph in pulling Santa and his sleigh in crossing the bridge?arrow_forwardSanta Clause is about to distribute his gifts, but his reindeer Rudolph is still sleepy. So, instead of flying they use the ground and cross a 20-m-long bridge. Starting from rest, Rudolph pulls Santa and his sleigh, with a force F 30° above the horizontal against a frictional force of 80N. 1. Draw an appropriate free body diagram to represent all the forces acting on Santa and his sleigh. 2. Suppose the combined mass of Santa, his sleigh, and his gifts is 500kg. What is the magnitude of Fif the acceleration of Santa and his sleigh is 1.5 meters per second squared? 3. How much work is done by Rudolph in pulling Santa and his sleigh in crossing the bridge? 4. What is the change in the kinetic energy of Santa and his sleigh after crossing the bridge? 5. How fast are they moving at the end of the bridge?arrow_forwardCan uh please solve 4th, 5th nd 6th questionarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY