Concept explainers
If your car is stuck in the mud and you don't have a winch to pull it out, you can use a piece of rope and a tree to do the trick. First, you tie one end of the rope to your car and the other to a tree, then pull as hard as you can on the middle of the rope, as shown in Figure P4.68 a. This technique applies a force to the car much larger than the force that you can apply directly. To see why the car experiences such a large force, look at the forces acting on the center point of the rope, as shown in Figure P4.68 b. The sum of the forces is zero, thus the tension is much greater than the force you apply. It is this tension force that acts on the car and, with luck, pulls it free.
Figure P4.68
69. When you are pulling on the rope as shown, what is the approximate direction of the tension force on the tree?
A. North
B. South
C. East
D. West
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
College Physics: A Strategic Approach (3rd Edition)
Additional Science Textbook Solutions
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Anatomy & Physiology (6th Edition)
Human Physiology: An Integrated Approach (8th Edition)
College Physics: A Strategic Approach (3rd Edition)
Campbell Biology (11th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
- An object of mass m = 1.00 kg is observed to have an acceleration a with a magnitude of 10.0 m/s2 in a direction 60.0 east of north. Figure P4.29 shows a view of the object from above. The force F2 acting on the object has a magnitude of 5.00 N and is directed north. Determine the magnitude and direction of the one other horizontal force F1 acting on the object. Figure P4.29arrow_forwardDraw a free-body diagram for the burglar, who is shown at rest while sneaking through a chimney in Figure P6.6.arrow_forwardReview. A block of mass m = 2.00 kg is released from rest at h = 0.500 m above the surface of a table, at the top of a = 30.0 incline as shown in Figure P4.53. The frictionless incline is fixed on a table of height H = 2.00 m. (a) Determine the acceleration of the block as it slides down the incline. (b) What is the velocity of the block as it leaves the incline? (c) How far from the table will the block hit the floor? (d) What time interval elapses between when the block is released and when it hits the floor? (e) Does the mass of the block affect any of the above calculations? Figure P4.53 Problems 53 and 59arrow_forward
- A ball hanging from a light string or rod can be used as an accelerometer (a device that measures acceleration) as shown in Figure P5.18. What force causes the deflection of the ball? Is the cart in the lower part of the photo an inertial reference frame? How can the balls deflection be used to find the carts acceleration? In which direction is the cart accelerating? Explain your answers.arrow_forwardAt a history center, an old canal boat is pulled by two draft horses. It doesn’t take much force to keep the boat moving; the drag force is quite small. But it takes some work to get the 55,000 kg boat up to speed! The horses can pull with a steady force and put a 1400 N tension in the rope that connects to the boat. The rope is straight and level. The boat starts from rest, and the horses pull steadily as they begin their walk down the towpath. How much distance do the horses cover as they bring the boat up to its final speed of 0.70 m/s?arrow_forwardProblem 56. Your car is stuck in a mud hole. You are alone but have a long, strong rope. Having studied physics you tie the rope tautly to a telephone pole and pull on it sideways as in the figure below. A) Find the forces exerted by the rope on the car when 0 = 3° and you are pulling with a force of 400 N and the car does not budge. B) How strong must the rope be if it takes a force F of 600 N to move the car when 0 = 4°. Pole Cararrow_forward
- Two friends are sitting in a stationary canoe. At t = 3.0 s the person at the front tosses a sack to the person in the rear, who catches the sack 0.2 s later. Which plot given shows the velocity of the boat as a function of time? Positive velocity is forward, negative velocity is backward. Neglect any drag force on the canoe from the water.arrow_forwardA block is on a frictionless table, on earth. The block accelerates at 2.6 m/s 2 when a 70 N horizontal force is applied to it. The block and table are set up on the moon. The acceleration due to gravity at the surface of the moon is 1.62 m/s 2. The weight of the block on the moon is closest to: O 38 N O 33 N O 27 N O 22 N O 44 Narrow_forwardA sled weighing 60.0 N is pulled horizontally across snow so that the coefficient of kinetic friction between sled and snow is 0. 100. A penguin weighing 70.0 N rides on the sled, as in Figure P4. 78. If the coefficient of static friction between penguin and sled is 0.700, find the maximum horizontal force that can be exerted on the sled before the penguin begins to slide off.arrow_forward
- Consider the modified Atwood machine problem illustrated in Example 6.4 on page 274 of the book, and suppose m1 = 5kg and m2 = 10kg . Suppose I apply a horizontal force to the block on the table, so that both masses are at rest. What is the magnitude of the force I should apply? Group of answer choices 6.53 N 0.0 N 32.7 N 98.0 Narrow_forwardA person is using a rope to lower a 0.5 kg bucket into a well with a constant speed of 2.0 m/s. What is the magnitude of the force exerted by the rope on the bucket?arrow_forwardTwo people are pulling a heavy 95 kg box across the floor as shown in the figure. Person A is pulling in the x-direction only with a force of 20 N. Person B is pulling at an angle e = 40° above the x-direction, also with a force of 20 N. What is the total pulling force on the box in the x-direction?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning