College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 26P
Very small forces can have tremendous effects on the motion of very small objects. This is particularly apparent at the scale of the atom. An electron, mass 9.1 × 10-31kg, experiences a force of 1.6 × 10-17N in a typical electric field at the earth’s surface. From rest, how much time would it take for the electron to reach a speed of 3.0 × 106m/s, 1% of the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The IKAROS spacecraft, launched in 2010, was designed to test the feasibility of solar sails for spacecraft propulsion. These large, ultralight sails are pushed on by the force of light from the sun, so the spacecraft doesn't need to carry any fuel. The force on IKAROS's sails was measured to be 1.12 mNmN.
If this were the only force acting on the 290 kg spacecraft, by how much would its speed increase after 7.0 months of flight? Assume there are 30 days in each month.
An electron is acted upon by a force of 3.00×10−15 NN due to an electric field. Find the acceleration this force produces in each case:
A) The electron's speed is 4.00 km/skm/s.
Express your answer in meters per second squared.
B) The electron's speed is 2.80×108 m/sm/s and the force is parallel to the velocity.
Express your answer in meters per second squared.
What force is required to accelerate an electron to 1.00 x 10^2 m/s?
Chapter 4 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 4 - If an object is not moving, does that mean that...Ch. 4 - An object moves in a straight line at a constant...Ch. 4 - If you know all of the forces acting on a moving...Ch. 4 - Three arrows are shot horizontally. They have left...Ch. 4 - A carpenter wishes to tighten the heavy head of...Ch. 4 - Internal injuries in vehicular acci-dents may be...Ch. 4 - Heres a great everyday use of the physics...Ch. 4 - Suppose you are an astronaut in deep space, far...Ch. 4 - Jonathan accelerates away from a stop sign. His...Ch. 4 - Normally, jet engines push air out the back of the...
Ch. 4 - If you are standing still, the upward normal force...Ch. 4 - Josh and Taylor, standing face-to-face on...Ch. 4 - A person sits on a sloped hillside. Is it ever...Ch. 4 - Walking without slipping requires a static...Ch. 4 - Figure 4.30 b showed a situation in which the...Ch. 4 - Alyssa pushes to the right on a filing cabinet;...Ch. 4 - A very smart three-year-old child is given a wagon...Ch. 4 - The tire on this drag racer is severely twisted:...Ch. 4 - Suppose that, while in a squatting position, you...Ch. 4 - A block has acceleration a when pulled by a...Ch. 4 - A 5.0 kg block has an acceleration of 0.20 m/s2...Ch. 4 - Tennis balls experience a large drag force. A...Ch. 4 - A group of students is making model cars that will...Ch. 4 - A person gives a box a shove so that it slides up...Ch. 4 - A person is pushing horizontally on a box with a...Ch. 4 - As shown in the chapter, scallops use jet...Ch. 4 - Dave pushes his four-year-old son Thomas across...Ch. 4 - Figure Q4.29 shows block A sitting on top of block...Ch. 4 - Whiplash injuries during an automobile accident...Ch. 4 - An automobile has a head-on collision. A passenger...Ch. 4 - In a head-on collision, an infant is much safer in...Ch. 4 - Problems 4 through 6 show two forces acting on an...Ch. 4 - Problems 4 through 6 show two forces acting on an...Ch. 4 - Problems 4 through 6 show two forces acting on an...Ch. 4 - A mountain climber is hanging from a vertical...Ch. 4 - You look up from your textbook and observe a...Ch. 4 - A baseball player is sliding into second base....Ch. 4 - A jet plane is speeding down the runway during...Ch. 4 - A skier is sliding down a 15 slope. Friction is...Ch. 4 - A falcon is hovering above the ground, then...Ch. 4 - Figure P4.13 shows an acceleration-versus-force...Ch. 4 - A constant force applied to object A causes it to...Ch. 4 - A compact car has a maximum acceleration of 4.0...Ch. 4 - A constant force is applied to an object, causing...Ch. 4 - A constant force is applied to an object, causing...Ch. 4 - A man pulling an empty wagon causes it to...Ch. 4 - A car has a maximum acceleration of 5.0 m/s2 What...Ch. 4 - Scallops eject water from their shells to provide...Ch. 4 - Figure P4.21 shows an objects...Ch. 4 - In t-ball, young players use a bat to hit a...Ch. 4 - Two children fight over a 200 g stuffed bear. The...Ch. 4 - A 1500 kg car is traveling along a straight road...Ch. 4 - The motion of a very massive object can be...Ch. 4 - Very small forces can have tremendous effects on...Ch. 4 - Problems 27 through 29 show a free-body diagram....Ch. 4 - Problems 27 through 29 show a free-body diagram....Ch. 4 - Problems 27 through 29 show a free-body diagram....Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Three ice skaters, numbered 1, 2, and 3, stand in...Ch. 4 - A girl stands on a sofa. Identify all the...Ch. 4 - A car is skidding to a stop on a level stretch of...Ch. 4 - Squid use jet propulsion for rapid escapes. A...Ch. 4 - Redraw the motion diagram shown in Figure P4.43,...Ch. 4 - Redraw the motion diagram shown in Figure P4.44,...Ch. 4 - Redraw the motion diagram shown in Figure P4.45,...Ch. 4 - Redraw the motion diagram shown in Figure P4.46,...Ch. 4 - A student draws the flawed free-body diagram shown...Ch. 4 - A student draws the flawed free-body diagram shown...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - A bag of groceries is on the back seat of your car...Ch. 4 - A car has a mass of 1500 kg. If the driver applies...Ch. 4 - A rubber ball bounces. Wed like to understand how...Ch. 4 - If a car stops suddenly, you feel thrown forward....Ch. 4 - The fastest pitched baseball was clocked at 46...Ch. 4 - The froghopper, champion leaper of the insect...Ch. 4 - A beach ball is thrown straight up, and some time...Ch. 4 - If your car is stuck in the mud and you dont have...Ch. 4 - If your car is stuck in the mud and you don't have...Ch. 4 - If your car is stuck in the mud and you don't have...Ch. 4 - If your car is stuck in the mud and you don't have...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Distinguish between microevolution, speciation, and macroevolution.
Campbell Essential Biology (7th Edition)
WH AT IF? Suppose two plant populations exchange pollen and seeds. In one population, individuals of geno-type...
Campbell Biology (11th Edition)
10. In rats, gene produces black coat color if the genotype is, but black pigment is not produced if the genoty...
Genetic Analysis: An Integrated Approach (3rd Edition)
Based on your answers to Questions 2 and 3, which part of the Atlantic basin appears to have opened first?
Applications and Investigations in Earth Science (9th Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
What are four functions of connective tissue?
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A system consists of five particles. How many terms appear in the expression for the total gravitational potential energy of the system? (a) 4 (b) 5 (c) 10 (d) 20 (e) 25arrow_forwardIn this problem, we will try to understand why chemical reactions cannot power the Sun, but nuclear reactions can. The energy scale of chemical reactions is a few eV, where eV is a unit of energy called an electron volt. 1 eV = 1.602 x 10-19 J. A typical chemical reaction involves an energy change of ~0.1 to 10 eV. In contrast, a nuclear reaction typically involves a change in energy of order a few MeV (mega electron volts; a factor of a million larger). Suppose that the Sun has a constant luminosity throughout its life, equal to its current luminosity of L⊙=3.827×1026J/s . Suppose also that the Sun is made entirely of hydrogen (or just protons, since the mass of the electron is about 2000 times smaller and is negligible in comparison). If every pair of two protons in the Sun undergo a one-time chemical reaction that nets ~1 eV of energy, how long would it take (in years) to expend all the available chemical energy?arrow_forwardThe IKAROS spacecraft, launched in 2010, was designed to test the feasibility of solar sails for spacecraft propulsion. These large, ultralight sails are pushed on by the force of light from the sun, so the spacecraft doesn't need to carry any fuel. The force on IKAROS's sails was measured to be 1.12 mNmN. If this were the only force acting on the 290 kgkg spacecraft, by how much would its speed increase after 9.0 months of flight? Assume there are 30 days in each month.arrow_forward
- An electron is released from rest at a distance of 9.00 cm from a proton. If the proton is held in place, how fast will the electron be moving when it is 3.00 cm from the proton? (mel-9.11 x 10-31 kg, e=1.60 × 10-19 C, k=1/480-8.99 × 109 N-m2/C2) O 1.06 x 103 m/s 130 m/s O 4.64 x 105 m/s 75.0 m/s 106 m/s None of the given choices.arrow_forwardAn electron is traveling at 5×105 m/s when it is 3 nm away from a proton. What is the speed of the electron if it escapes the proton to a location far away from it?arrow_forwardA certain moving electron has a kinetic energyof 0.997 × 10−19 J.Calculate the speed necessary for the electron to have this energy. The mass of anelectron is 9.109 × 10−31 kg.Answer in units of m/s. Calculate the speed of a proton having a kinetic energy of 0.997 × 10−19 J and a mass of1.673 × 10−27 kg.Answer in units of m/s.arrow_forward
- Q. 3. Accelerated charge particles emit electromagnetic radiations. A particle having charge q and acceleration a radiates energy at a rate given by dE q²a²/6n€,c³ dt Where c is speed of light. (a) f a proton with kinetic energy 9.6x1013 J is accelerated in a circular orbit of radius 0.75 m, what fraction of its energy does it radiate per second? (b) If an electron is accelerated in the same orbit with the same speed, what fraction of its energy does it radiate per second?arrow_forwardA newly discovered light positively charged particle has a mass of m and charge q. Suppose it moves within the vicinity of an extremely heavy (fixed in place) particle with a positive charge Q and mass M. When the light particle is xi distance from the heavy particle, it is moving directly away from the heavy particle with a speed of vi. a) What is the lighter particle's speed when it is xf away from the heavy particle? (Consider the Newtonian Gravitation acting between the two charged particles. Ignore the effects of external forces)arrow_forwardA newly discovered light positively charged particle has a mass of m and charge q. Suppose it moves within the vicinity of an extremely heavy (fixed in place) particle with a positive charge Q and mass M. When the light particle is xi distance from the heavy particle, it is moving directly away from the heavy particle with a speed of vi. a) What is the lighter particle's speed when it is xf away from the heavy particle? (Consider the Newtonian Gravitation acting between the two charged particles. Ignore the effects of external forces)arrow_forward
- A newly discovered light positively charged particle has a mass of m and charge q. Suppose it moves within the vicinity of an extremely heavy (fixed in place) particle with a positive charge Q and mass M. When the light particle is xi distance from the heavy particle, it is moving directly away from the heavy particle with a speed of vi. a) What is the lighter particle's speed when it is xf away from the heavy particle? (Consider the Newtonian Gravitation acting between the two charged particles. Ignore the effects of external forces)... (disregard current answers if wrong)arrow_forwardAssuming the electron is in a circular orbit around the proton, what is the electron's speed as it zips around? 3.60 x 105 m/s 1.88 x 105 m/s 5.38 x 106 m/s 2.18 x 106 m/sarrow_forwardTwo spheres of equal diameter have a positive 20 µC and a negative 15 µC, respectively. If they are placed 10 cm apart, what would be the force of attraction between them? is at first raised? Why is the final answer is + 270 N if one of the given values is q2= - 15 C?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY