College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 15CQ
Walking without slipping requires a static friction force between your feet (or footwear) and the floor. As described in this chapter, the force on your foot as you push off the floor is forward while the force exerted by your foot on the floor is backward. But what about your other foot, the one moved during a stride? What is the direction of the force on that foot as it comes into contact with the floor? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Explain Your given solution and answer.
The crate, which has a mass of 100 kg, is subjected to the action of the two forces. If it is originally at
rest, determine the distance it slides in order to attain a speed of 6 m/s. The coefficient of kinetic friction
between the crate and the surface is ue = 0.2.
1000 N
800 N
30
Two people are pushing a truck across a parking lot. The truck has a mass of about 2 × 10 kg. First, they take turns pushing. When Person A pushes the truck, the truck accelerates at a rate of 1 m/s?. When Person B pushes the truck, it accelerates at a rate of 2 m/s?(a) Both people stand behind the truck and push in the same direction. What is the net force on the truck? At what rate will the truck accelerate?(b) Person A stands at the back of the truck and Person B stands at the front, and they push in opposite directions. What is the net force on the truck? At what rate will the truck accelerate? In what direction?For both (a) and (b), draw a picture indicating the forces applied by A and B as well as the motion of the truck.
Chapter 4 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 4 - If an object is not moving, does that mean that...Ch. 4 - An object moves in a straight line at a constant...Ch. 4 - If you know all of the forces acting on a moving...Ch. 4 - Three arrows are shot horizontally. They have left...Ch. 4 - A carpenter wishes to tighten the heavy head of...Ch. 4 - Internal injuries in vehicular acci-dents may be...Ch. 4 - Heres a great everyday use of the physics...Ch. 4 - Suppose you are an astronaut in deep space, far...Ch. 4 - Jonathan accelerates away from a stop sign. His...Ch. 4 - Normally, jet engines push air out the back of the...
Ch. 4 - If you are standing still, the upward normal force...Ch. 4 - Josh and Taylor, standing face-to-face on...Ch. 4 - A person sits on a sloped hillside. Is it ever...Ch. 4 - Walking without slipping requires a static...Ch. 4 - Figure 4.30 b showed a situation in which the...Ch. 4 - Alyssa pushes to the right on a filing cabinet;...Ch. 4 - A very smart three-year-old child is given a wagon...Ch. 4 - The tire on this drag racer is severely twisted:...Ch. 4 - Suppose that, while in a squatting position, you...Ch. 4 - A block has acceleration a when pulled by a...Ch. 4 - A 5.0 kg block has an acceleration of 0.20 m/s2...Ch. 4 - Tennis balls experience a large drag force. A...Ch. 4 - A group of students is making model cars that will...Ch. 4 - A person gives a box a shove so that it slides up...Ch. 4 - A person is pushing horizontally on a box with a...Ch. 4 - As shown in the chapter, scallops use jet...Ch. 4 - Dave pushes his four-year-old son Thomas across...Ch. 4 - Figure Q4.29 shows block A sitting on top of block...Ch. 4 - Whiplash injuries during an automobile accident...Ch. 4 - An automobile has a head-on collision. A passenger...Ch. 4 - In a head-on collision, an infant is much safer in...Ch. 4 - Problems 4 through 6 show two forces acting on an...Ch. 4 - Problems 4 through 6 show two forces acting on an...Ch. 4 - Problems 4 through 6 show two forces acting on an...Ch. 4 - A mountain climber is hanging from a vertical...Ch. 4 - You look up from your textbook and observe a...Ch. 4 - A baseball player is sliding into second base....Ch. 4 - A jet plane is speeding down the runway during...Ch. 4 - A skier is sliding down a 15 slope. Friction is...Ch. 4 - A falcon is hovering above the ground, then...Ch. 4 - Figure P4.13 shows an acceleration-versus-force...Ch. 4 - A constant force applied to object A causes it to...Ch. 4 - A compact car has a maximum acceleration of 4.0...Ch. 4 - A constant force is applied to an object, causing...Ch. 4 - A constant force is applied to an object, causing...Ch. 4 - A man pulling an empty wagon causes it to...Ch. 4 - A car has a maximum acceleration of 5.0 m/s2 What...Ch. 4 - Scallops eject water from their shells to provide...Ch. 4 - Figure P4.21 shows an objects...Ch. 4 - In t-ball, young players use a bat to hit a...Ch. 4 - Two children fight over a 200 g stuffed bear. The...Ch. 4 - A 1500 kg car is traveling along a straight road...Ch. 4 - The motion of a very massive object can be...Ch. 4 - Very small forces can have tremendous effects on...Ch. 4 - Problems 27 through 29 show a free-body diagram....Ch. 4 - Problems 27 through 29 show a free-body diagram....Ch. 4 - Problems 27 through 29 show a free-body diagram....Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Problems 30 through 38 describe a situation. For...Ch. 4 - Three ice skaters, numbered 1, 2, and 3, stand in...Ch. 4 - A girl stands on a sofa. Identify all the...Ch. 4 - A car is skidding to a stop on a level stretch of...Ch. 4 - Squid use jet propulsion for rapid escapes. A...Ch. 4 - Redraw the motion diagram shown in Figure P4.43,...Ch. 4 - Redraw the motion diagram shown in Figure P4.44,...Ch. 4 - Redraw the motion diagram shown in Figure P4.45,...Ch. 4 - Redraw the motion diagram shown in Figure P4.46,...Ch. 4 - A student draws the flawed free-body diagram shown...Ch. 4 - A student draws the flawed free-body diagram shown...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - Problems 49 through 61 describe a situation. For...Ch. 4 - A bag of groceries is on the back seat of your car...Ch. 4 - A car has a mass of 1500 kg. If the driver applies...Ch. 4 - A rubber ball bounces. Wed like to understand how...Ch. 4 - If a car stops suddenly, you feel thrown forward....Ch. 4 - The fastest pitched baseball was clocked at 46...Ch. 4 - The froghopper, champion leaper of the insect...Ch. 4 - A beach ball is thrown straight up, and some time...Ch. 4 - If your car is stuck in the mud and you dont have...Ch. 4 - If your car is stuck in the mud and you don't have...Ch. 4 - If your car is stuck in the mud and you don't have...Ch. 4 - If your car is stuck in the mud and you don't have...
Additional Science Textbook Solutions
Find more solutions based on key concepts
8. Studies of DNA support which of the following?
a. Members of the group called australopiths were the first t...
Campbell Biology: Concepts & Connections (9th Edition)
All of the following processes are involved in the carbon cycle except: a. photosynthesis b. cell respiration c...
Human Biology: Concepts and Current Issues (8th Edition)
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology with Physiology (5th Edition)
4. What five specific threats to biodiversity are described in this chapter? Provide an example of each.
Biology: Life on Earth (11th Edition)
Choose the best answer to each of the following. Explain your reasoning. Which of a planets fundamental propert...
Cosmic Perspective Fundamentals
The bioremediation process shown in the photograph is used to remove benzene and other hydrocarbons from soil c...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Why is the following situation impossible? A 1.30-kg toaster is not plugged in. The coefficient of static friction between the toaster and a horizontal countertop is 0.350. To make the toaster start moving, you carelessly pull on its electric cord. Unfortunately, the cord has become frayed from your previous similar actions and will break if the tension in the cord exceeds 4.00 N. By pulling on the cord at a particular angle, you successfully start the toaster moving without breaking the cord.arrow_forwardTwo forces act on a 4.5-kg block resting on a frictionless surface. F1 = 3.7 N pushes the box to the right while F2 pulls the box at 43° from the horizontal. What is the magnitude of the horizontal acceleration of the block? (A) 3.2 m/s2 (B) 1.8 m/s2 1.2 m/s2 D) 8.9 m/s2 E) 0.82 m/s2arrow_forwardA woman pushes a 10.0 kg box across a horizontal floor with a constant force of magnitude 40.0 N directed at an angle of -25° with respect to the positive x-axis. The box moves horizontally to the right. At the origin (x=0) the box has an initial speed of 4.00 m/s and the woman pushes it to a location ofx=3.00 m. what is the force of the woman? what is the force of gravity? what is the normal force of the floor?arrow_forward
- A rope is attached to a box with mass 122 kg and Person A is pulling the box to the right on the floor. There is a frictional force between the floor and the box, and the magnitude of the tension force in the rope is 98 N. Now Person B comes into help person A. Person B pushes the box to the right with a force of 65 N. and the box accelerates at the rate of 0.75 m/s^2 to the right. Person A is pulling the box with the same constant force before and after Person B comes in to help. Assuming that the frictional force is also constant before and after Person B comes in. What is the magnitude of the frictional force between the box and the floor in the unit N? Answer to nearest whole number.arrow_forwardAs in problem 80, an 86-kg man plans to tow a 112000-kg airplane along a runway by pulling horizontally on a cable attached to it. Suppose that he instead attempts the feat by pulling the cable at an angle of 7.8° above the horizontal. The coefficient of static friction between his shoes and the runway is 0.93. What is the greatest acceleration the man can give the airplane? Assume that the airplane is on wheels that turn without any frictional resistance. Number i Unitsarrow_forwardThe physics of circular motion sets an upper limit to the speed of human walking. (If you need to go faster, your gait changes from a walk to a run.) If you take a few steps and watch what's happening, you'll see that your body pivots in circular motion over your forward foot as you bring your rear foot forward for the next step. As you do so, the normal force of the ground on your foot decreases and your body tries to "lift off" from the ground. A. A person's center of mass is very near the hips, at the top of the legs. Model a person as a particle of mass m at the top of a leg of length L. Find an expression for the person's maximum walking speed vmax Express your answer in terms of the variables L and appropriate constants. b.)Evaluate your expression for the maximum walking speed of a 70 kg person with a typical leg length of 70 cm . Give your answer in m/s. c.) Give your answer in mph.arrow_forward
- Blocks with masses of 1.0 kg, 2.0 kg, and 3.0 kg are lined up in a row on a frictionless table. All three are pushed forward by a 12 N force applied to the 1.0 kg block. How much force does the 2.0 kg block exert on (a) the 3.0 kg block and (b) the 1.0 kg block?arrow_forwardTwo people are pushing a truck across a parking lot. The truck has a mass of about 2 × 103 kg. First, they take turns pushing. When Person A pushes the truck, the truck accelerates at a rate of 1 m/s2. When Person B pushes the truck, it accelerates at a rate of 2 m/s?. (a) Both people stand behind the truck and push in the same direction. What is the net force on the truck? At what rate will the truck accelerate? (b) Person A stands at the back of the truck and Person B stands at the front, and they push in opposite directions. What is the net force on the truck? At what rate will the truck accelerate? In what direction? For both (a) and (b), draw a picture indicating the forces applied by A and B as well as the motion of the truck.arrow_forwardThe quadriceps tendon passes over the kneecap and presses on the temur. The tension in the tendon is F = 1000 N. What is the magnitude of the resultant force of the kneecap acting on the femur for the angles as shown in the diagram (to the nearest 100 N)? Kneecap 1500 N 2000 N 120 N 1300 N 600 N 300 Narrow_forward
- A tractor is being used to pull two large logs across a field. A chain connects the logs to each other; the front log is connected to the tractor by a separate chain. The mass of the front log is 180 kg. The mass of the back log is 220 kg. The coefficient of friction between the logs and the field is approximately 0.45. The tension in the chain connecting the tractor to the front log is 1850 N. Determine the acceleration of the logs and the tension in the chain that connects the two logs.arrow_forwardmust be used? Ans: 39 N Question 12. A skier is pulled up a slope at a constant velocity by a tow bar. The slope is inclined at 24.2° with respect to the horizontal. The force applied to the skier by the tow bar is parallel to the slope. The skier's mass is 56.7 kg, and the coefficient of kinetic friction between the skis and the snow is 0.140. Find the magnitude of the force that the tow bar exerts on the skier. Ans: 299 N What is thearrow_forwardIn the sport of curling, players slide a 20.0 kg granite stone down a 38.0 m long ice rink. The coefficient of kinetic friction of the stone on ice is 0.0168. Calculate the initial speed of the stone, if it comes to rest after travelling 38.0 m, assuming that it travelled in a straight line and does not rotate while sliding. O 4.38 m/s O 6.02 m/s 3.58 m/s O 342 m/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY