Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 37, Problem 4Q
To determine
Red bulb work in a dark room for developing black and white film and will it work for the color photographs.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Darkrooms for developing black-and-white film weresometimes lit by a red bulb. Why red? Explain if such abulb would work in a darkroom for developing color film.
An unknown element is used as a target in an x-ray tube. Measurements show that the characteristic spectral lines with the longest wavelengths are 0.155 nm and 0.131 nm. What is the element.
Problem 30.66 - Enhanced - with Expanded Hints
A beam of neutrons with a de Broglie wavelength of 0.240 nm diffracts from a crystal of table
salt, which has an interionic spacing of 0.282 nm
Part A
What is the speed of the neutrons?
Express your answer in kilometers per second.
► View Available Hint(s)
V =
xa
Submit
- ΑΣΦ
a
Xo = √x x
b
Previous Answers
X
2
?
x |X| X.10n
X
km/s
X Incorrect; Try Again; 4 attempts remaining
You may have confused the mass of an electron with the mass of a neutron. Recall that the mass of a neutron is equal to 1.675 × 10-27 kg.
Chapter 37 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 37.2 - Prob. 1AECh. 37.2 - Prob. 1BECh. 37.4 - Prob. 1CECh. 37.7 - Prob. 1DECh. 37.7 - Prob. 1EECh. 37.11 - Prob. 1FECh. 37 - Prob. 1QCh. 37 - Prob. 2QCh. 37 - Prob. 3QCh. 37 - Prob. 4Q
Ch. 37 - Prob. 5QCh. 37 - Prob. 6QCh. 37 - Prob. 7QCh. 37 - Prob. 8QCh. 37 - Prob. 9QCh. 37 - Prob. 10QCh. 37 - Prob. 11QCh. 37 - Prob. 12QCh. 37 - Prob. 13QCh. 37 - Prob. 14QCh. 37 - Prob. 15QCh. 37 - Prob. 16QCh. 37 - Prob. 17QCh. 37 - Prob. 18QCh. 37 - Prob. 19QCh. 37 - Prob. 20QCh. 37 - Prob. 21QCh. 37 - Prob. 22QCh. 37 - Prob. 23QCh. 37 - Prob. 24QCh. 37 - Prob. 25QCh. 37 - Prob. 26QCh. 37 - Prob. 27QCh. 37 - Prob. 28QCh. 37 - Prob. 1PCh. 37 - Prob. 2PCh. 37 - Prob. 3PCh. 37 - Prob. 4PCh. 37 - Prob. 5PCh. 37 - Prob. 6PCh. 37 - Prob. 7PCh. 37 - Prob. 8PCh. 37 - Prob. 9PCh. 37 - Prob. 10PCh. 37 - Prob. 11PCh. 37 - Prob. 12PCh. 37 - Prob. 13PCh. 37 - Prob. 14PCh. 37 - Prob. 15PCh. 37 - Prob. 16PCh. 37 - Prob. 17PCh. 37 - Prob. 18PCh. 37 - Prob. 19PCh. 37 - Prob. 20PCh. 37 - Prob. 21PCh. 37 - Prob. 22PCh. 37 - Prob. 23PCh. 37 - Prob. 24PCh. 37 - Prob. 25PCh. 37 - Prob. 26PCh. 37 - Prob. 27PCh. 37 - Prob. 28PCh. 37 - Prob. 29PCh. 37 - Prob. 30PCh. 37 - Prob. 31PCh. 37 - Prob. 32PCh. 37 - Prob. 33PCh. 37 - Prob. 34PCh. 37 - Prob. 35PCh. 37 - Prob. 36PCh. 37 - Prob. 37PCh. 37 - Prob. 38PCh. 37 - Prob. 39PCh. 37 - Prob. 40PCh. 37 - Prob. 41PCh. 37 - Prob. 42PCh. 37 - Prob. 43PCh. 37 - Prob. 44PCh. 37 - Prob. 45PCh. 37 - Prob. 46PCh. 37 - Prob. 47PCh. 37 - Prob. 48PCh. 37 - Prob. 49PCh. 37 - Prob. 50PCh. 37 - Prob. 51PCh. 37 - Prob. 52PCh. 37 - Prob. 53PCh. 37 - Prob. 54PCh. 37 - Prob. 55PCh. 37 - Prob. 56PCh. 37 - Prob. 57PCh. 37 - Prob. 58PCh. 37 - Prob. 59PCh. 37 - Prob. 60PCh. 37 - Prob. 61PCh. 37 - Prob. 62PCh. 37 - Prob. 63PCh. 37 - Prob. 64PCh. 37 - Prob. 65PCh. 37 - Prob. 66PCh. 37 - Prob. 67PCh. 37 - Prob. 68PCh. 37 - Prob. 69PCh. 37 - Prob. 70PCh. 37 - Prob. 71PCh. 37 - Prob. 72GPCh. 37 - Prob. 73GPCh. 37 - Prob. 74GPCh. 37 - Prob. 75GPCh. 37 - Prob. 76GPCh. 37 - Prob. 77GPCh. 37 - Prob. 78GPCh. 37 - Prob. 79GPCh. 37 - Prob. 80GPCh. 37 - Prob. 81GPCh. 37 - Prob. 82GPCh. 37 - Prob. 83GPCh. 37 - Prob. 84GPCh. 37 - Prob. 85GPCh. 37 - Prob. 86GPCh. 37 - Prob. 87GPCh. 37 - Prob. 88GPCh. 37 - Prob. 89GPCh. 37 - Prob. 90GPCh. 37 - Prob. 91GPCh. 37 - Prob. 92GPCh. 37 - Prob. 93GPCh. 37 - Show that the wavelength of a particle of mass m...Ch. 37 - Prob. 95GPCh. 37 - Prob. 96GPCh. 37 - Prob. 97GPCh. 37 - Prob. 98GPCh. 37 - Prob. 99GPCh. 37 - Prob. 100GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The Balmer series for hydrogen was discovered before either the Lyman or the Paschen series. Why?arrow_forwardShow that Stefan’s law results from Planck’s radiation law. Hin: To compute the total power of blackbody radiation emitted across the entire spectrum of wavelengths at a given temperature, integrate Planck’s law over the entire spectrum P(T)=0I(,T)d. Use the substitution x=hckT and the tabulated value of the integral 0dx x 3( e x 1)=415arrow_forwardAn electron microscope produces electrons with a 2.10 pm wavelength. If these are passed through a 1.45 nm single slit, at what angle will the first diffraction minimum be found?arrow_forward
- -27 (c) i. A thermal neutron has an energy of E= 0.025 eV and a mass of 1.675 x 107 kg. Calculate the de Broglie wavelength of a thermal neutron. ii. On the basis of this result, explain whether it is possible to observe diffraction effects when the neutron is scattered by a cobalt crystal. Suggest a reason why performing neutron diffraction experiments is challenging.arrow_forward137. A laser with a power output of 2.00 mW at a 400-nm wavelength is used to project a beam of light onto a calcium photoelectrode. (a) How many photoelectrons leave the calcium surface per second? (b) What power is carried away by ejected photoelectrons, given that the work function of calcium is 2.31 eV? (c) Calculate the photocurrent. (d) If the photoelectrode suddenly becomes electrically insulated and the setup of two electrodes in the circuit suddenly starts to act like a 2.00-pF capacitor, how long will current flow before the capacitor voltage stops it?arrow_forward7. Resolving ‘power’ of an electron microscope versus optical (photon) microscope: If a resolution of 1.0 x 10-11m (0.010nm) is required to ‘see’ an atom (a) If electrons are used (emicroscope), what minimum kinetic energy of the electrons is required? Use deBroglie’s Hypothesis and KE = p2 /2me and non-relativistic velocities: (b) If photons are used, what minimum KE (Eγ) is required to obtain 10-11m resolution?arrow_forward
- An electron microscope is designed to resolve objects as small as 0.14 nm. What energy electrons must be used in this instrument?arrow_forwardIn an x-ray tube, if the energy with which the electrons strike the metal target is increased, the wavelengths of the characteristic x-rays do not change. Why not?arrow_forward11B). Photons with energy of 2.35 eV are used in a photoelectric effect experiment. The binding energy of the material used is 1.85 eV. What is the de Broglie wavelength of the ejected electrons?arrow_forward
- When a surface is irradiated with light of wavelength 4950 A, a photocurrent appears which vanishes if a retarding potential greater than 0.6 V is applied across the phototube. When different source of light is used, it is found that the critical retarding potential is changed to 1.1 V. Find the work function of the emitting surface and the wavelength of the second source. ........arrow_forwardObservers at a safe distance from an atmospheric test of a nuclear bomb feel its heat but receive none of its copious x rays.Why is air opaque to x rays but transparent to infrared?arrow_forward3. A 6-stage photomultiplier tube has a dark current of 2 nA. The secondary emission ratio of each dynode is 10 and the external quantum efficiency of the photocathode is 0.4. (1) The electrons produced by the photocathode every second as the background noise. (2) The minimum detectable optical power for 600-nm light if the signal-to-noise ratio is 1.earrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax