Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 37, Problem 77GP
To determine
The number of photons per second that are hitting the wall.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A beam of red laser light ( λ= 633nm)hits a black walland is fully absorbed. If this light exerts a total force F=5.8nNon the wall, how many photons per second are hitting the wall?
A parallel beam of 500-keV photons is normally incident on 0.8 cm sheet of lead (density = 11.4 g/cm³) at a
rate of 2x10 photns/sec. µ/p = 0.16 cm²/g, Hen/p = 0.09 cm²/g, H/p = 0.11 cm²/g
What is the fraction of photons transmitted without interaction?
Choose. +
What fraction of the transmitted energy is due to uncollided photons?
Choose...
What fraction of the initial kinetic energy transferred to the electrons is emitted as
Bremsstrahlung?
Choose...
A 519 nm laser emits 2.41 x 1019 photons per second, how much total energy (in J) would this transfer if it was shined directly on an object for 3.24 s?
Chapter 37 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 37.2 - Prob. 1AECh. 37.2 - Prob. 1BECh. 37.4 - Prob. 1CECh. 37.7 - Prob. 1DECh. 37.7 - Prob. 1EECh. 37.11 - Prob. 1FECh. 37 - Prob. 1QCh. 37 - Prob. 2QCh. 37 - Prob. 3QCh. 37 - Prob. 4Q
Ch. 37 - Prob. 5QCh. 37 - Prob. 6QCh. 37 - Prob. 7QCh. 37 - Prob. 8QCh. 37 - Prob. 9QCh. 37 - Prob. 10QCh. 37 - Prob. 11QCh. 37 - Prob. 12QCh. 37 - Prob. 13QCh. 37 - Prob. 14QCh. 37 - Prob. 15QCh. 37 - Prob. 16QCh. 37 - Prob. 17QCh. 37 - Prob. 18QCh. 37 - Prob. 19QCh. 37 - Prob. 20QCh. 37 - Prob. 21QCh. 37 - Prob. 22QCh. 37 - Prob. 23QCh. 37 - Prob. 24QCh. 37 - Prob. 25QCh. 37 - Prob. 26QCh. 37 - Prob. 27QCh. 37 - Prob. 28QCh. 37 - Prob. 1PCh. 37 - Prob. 2PCh. 37 - Prob. 3PCh. 37 - Prob. 4PCh. 37 - Prob. 5PCh. 37 - Prob. 6PCh. 37 - Prob. 7PCh. 37 - Prob. 8PCh. 37 - Prob. 9PCh. 37 - Prob. 10PCh. 37 - Prob. 11PCh. 37 - Prob. 12PCh. 37 - Prob. 13PCh. 37 - Prob. 14PCh. 37 - Prob. 15PCh. 37 - Prob. 16PCh. 37 - Prob. 17PCh. 37 - Prob. 18PCh. 37 - Prob. 19PCh. 37 - Prob. 20PCh. 37 - Prob. 21PCh. 37 - Prob. 22PCh. 37 - Prob. 23PCh. 37 - Prob. 24PCh. 37 - Prob. 25PCh. 37 - Prob. 26PCh. 37 - Prob. 27PCh. 37 - Prob. 28PCh. 37 - Prob. 29PCh. 37 - Prob. 30PCh. 37 - Prob. 31PCh. 37 - Prob. 32PCh. 37 - Prob. 33PCh. 37 - Prob. 34PCh. 37 - Prob. 35PCh. 37 - Prob. 36PCh. 37 - Prob. 37PCh. 37 - Prob. 38PCh. 37 - Prob. 39PCh. 37 - Prob. 40PCh. 37 - Prob. 41PCh. 37 - Prob. 42PCh. 37 - Prob. 43PCh. 37 - Prob. 44PCh. 37 - Prob. 45PCh. 37 - Prob. 46PCh. 37 - Prob. 47PCh. 37 - Prob. 48PCh. 37 - Prob. 49PCh. 37 - Prob. 50PCh. 37 - Prob. 51PCh. 37 - Prob. 52PCh. 37 - Prob. 53PCh. 37 - Prob. 54PCh. 37 - Prob. 55PCh. 37 - Prob. 56PCh. 37 - Prob. 57PCh. 37 - Prob. 58PCh. 37 - Prob. 59PCh. 37 - Prob. 60PCh. 37 - Prob. 61PCh. 37 - Prob. 62PCh. 37 - Prob. 63PCh. 37 - Prob. 64PCh. 37 - Prob. 65PCh. 37 - Prob. 66PCh. 37 - Prob. 67PCh. 37 - Prob. 68PCh. 37 - Prob. 69PCh. 37 - Prob. 70PCh. 37 - Prob. 71PCh. 37 - Prob. 72GPCh. 37 - Prob. 73GPCh. 37 - Prob. 74GPCh. 37 - Prob. 75GPCh. 37 - Prob. 76GPCh. 37 - Prob. 77GPCh. 37 - Prob. 78GPCh. 37 - Prob. 79GPCh. 37 - Prob. 80GPCh. 37 - Prob. 81GPCh. 37 - Prob. 82GPCh. 37 - Prob. 83GPCh. 37 - Prob. 84GPCh. 37 - Prob. 85GPCh. 37 - Prob. 86GPCh. 37 - Prob. 87GPCh. 37 - Prob. 88GPCh. 37 - Prob. 89GPCh. 37 - Prob. 90GPCh. 37 - Prob. 91GPCh. 37 - Prob. 92GPCh. 37 - Prob. 93GPCh. 37 - Show that the wavelength of a particle of mass m...Ch. 37 - Prob. 95GPCh. 37 - Prob. 96GPCh. 37 - Prob. 97GPCh. 37 - Prob. 98GPCh. 37 - Prob. 99GPCh. 37 - Prob. 100GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A photon of energy 5.0 keV collides with a stationary electron and is scattered at an angle of 60°. What is the energy acquired by the electron in the collision?arrow_forwardIf the work function of a metal is 3.2 eV, what is the maximum wavelength that a photon can have to eject a photoelectron from this metal surface?arrow_forwardWhat is the momentum of a 589-nm yellow photon?arrow_forward
- A 900-W microwave generator in an oven generates energy quanta of frequency 2560 MHz. (a) How many energy quanta does it emit per second? (b) How many energy quanta must be absorbed by a pasta dish placed in the radiation cavity to increase its temperature by 45.0 K? Assume that the dish has a mass of 0.5 kg and that its specific heat is 0.9 kcal/kg • K. (c) Assume that all energy quanta emitted by the generator are absorbed by the pasta dish. How long must we wait until the dish in (b) is ready?arrow_forwardYou set up a photoelectric experiment with an unknown metal to eject electrons. You use light of wavelength λ = 670 nm, which just BARELY ejects electrons from the metal. Planck□s constant is either h = 6.63 x 10-34 J-s or h = 4.14 x 10-15 ev.s. a) What is the binding energy of the unknown metal in eV? ev b) You change the light source to one with a wavelength of λ = 310 nm. Using the binding energy you found in the previous step, find the maximum kinetic energy of an electron that is ejected from the metal in Joules. J c) What is the stopping voltage for an electron with the kinetic energy you just found? Varrow_forwardA certain helium-neon laser pointer, emitting light with a wavelength of 632 nm, has a beam with an intensity of 715 W/m2 and a diameter of 2.70 mm. How many photons are emitted by the laser pointer every second? Thank you for the help!arrow_forward
- A radiation detector exposed to light from a source gives an output of 0.71 J cm¯² min¯¹ as 1.68×10¹⁸ photons are striking each cm² in one minute. What should be the wavelength of the incident light as nm?arrow_forwards) The cutoff frequency of a specific metal is known to be 0.72x1015Hz. During a photoelectric experiment, 3.7x102º photons with a wavelength of 167nm are striking a plate every second. What is the power of the photons and what is the maximum kinetic energy of the ejected electrons?arrow_forwardA light beam of wavelength 431 nm and intensity 159 W/m^2 shines on a target of area 2.86 m^2 for a duration of 2.12 s. How many photons from the light beam will have struck the target during this time? O 2.93E+21 3.76E+21 O 2.09E+21 O 1.05E+21arrow_forward
- An x ray source is incident on a collection of stationary electrons. The electrons are scattered with a speed of 4.50 \times 10^5 m/s, and the photon scatters at an angle of 60.0\ deg from the incident direction of the photons. Determine the wavelength of the x ray source.arrow_forwardMost microwave ovens emit electro-magnetic radiation with a wavelength () of 12.24 cm. This EM-radiation is used to heat stuff up, like food, and it is emitted at a rate of 6.30 × 1026 photons/second for a typical microwave. How long will it take to boil a 175.0 mL cup of water initially at 25.5 ºC (water boils at 100.0 ºC) if 45.0% of the photons emitted by the microwave oven are absorbed by the water? My answer does not even make any sort of rational sense...arrow_forwardA Blu-ray disc player uses a λ = 405nm, P = 5.00mW laser and can read 18. 5ns. The energy emitted by the laser during that time is 9.25 x 10-11 J. How many photons of laser light are emitted during one bit of data in At that time? 24.98.91-88 188 1,880 18,800,000 188,000,000 1,880,000,000 Huumemaliarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax