Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 37, Problem 82GP
To determine
The proof that the magnitude of the electrostatic potential energy of an electron in any Bohr orbit of a hydrogen atom it twice the magnitude of its kinetic energy in that orbit.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
As per Bohr model of a hydrogen atom for a stable orbit centripetal, Coulomb, and all forces
should be in equilibrium. Therefore, for an electron with mass me and speed v₁ on the nth orbit
with radius rn, (k being Coulomb/s constant)
mevn = ke²/rn
mevn² = ke²/rn
mevn²/rn = ke²/rn
2.2
Ome²v² = ke²/r²
A particular Bohr orbit in a hydrogen atom has a total energy of-0.85 eV. What are (a) the kinetic energy of the electron in thisorbit and (b) the electric potential energy of the system?
The electron of a hydrogen atom is in an orbit with radius of 8.46 Å (1 Å = 10-10 m), according to the Bohr model. Which of the following statements is correct?
a) The total energy of the orbit is –13.6 eV, and the kinetic energy is +13.6 eV.
b) The total energy of the orbit is –0.85 eV, and the potential energy is –1.70 eV.
c) The total energy of the orbit is –0.85 eV, and the potential energy is +1.70 eV.
d) The total energy of the orbit is –0.85 eV, and the potential energy is –0.85 eV.
e) The total energy of the orbit is –3.40 eV, and the potential energy is –6.80 eV.
Chapter 37 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 37.2 - Prob. 1AECh. 37.2 - Prob. 1BECh. 37.4 - Prob. 1CECh. 37.7 - Prob. 1DECh. 37.7 - Prob. 1EECh. 37.11 - Prob. 1FECh. 37 - Prob. 1QCh. 37 - Prob. 2QCh. 37 - Prob. 3QCh. 37 - Prob. 4Q
Ch. 37 - Prob. 5QCh. 37 - Prob. 6QCh. 37 - Prob. 7QCh. 37 - Prob. 8QCh. 37 - Prob. 9QCh. 37 - Prob. 10QCh. 37 - Prob. 11QCh. 37 - Prob. 12QCh. 37 - Prob. 13QCh. 37 - Prob. 14QCh. 37 - Prob. 15QCh. 37 - Prob. 16QCh. 37 - Prob. 17QCh. 37 - Prob. 18QCh. 37 - Prob. 19QCh. 37 - Prob. 20QCh. 37 - Prob. 21QCh. 37 - Prob. 22QCh. 37 - Prob. 23QCh. 37 - Prob. 24QCh. 37 - Prob. 25QCh. 37 - Prob. 26QCh. 37 - Prob. 27QCh. 37 - Prob. 28QCh. 37 - Prob. 1PCh. 37 - Prob. 2PCh. 37 - Prob. 3PCh. 37 - Prob. 4PCh. 37 - Prob. 5PCh. 37 - Prob. 6PCh. 37 - Prob. 7PCh. 37 - Prob. 8PCh. 37 - Prob. 9PCh. 37 - Prob. 10PCh. 37 - Prob. 11PCh. 37 - Prob. 12PCh. 37 - Prob. 13PCh. 37 - Prob. 14PCh. 37 - Prob. 15PCh. 37 - Prob. 16PCh. 37 - Prob. 17PCh. 37 - Prob. 18PCh. 37 - Prob. 19PCh. 37 - Prob. 20PCh. 37 - Prob. 21PCh. 37 - Prob. 22PCh. 37 - Prob. 23PCh. 37 - Prob. 24PCh. 37 - Prob. 25PCh. 37 - Prob. 26PCh. 37 - Prob. 27PCh. 37 - Prob. 28PCh. 37 - Prob. 29PCh. 37 - Prob. 30PCh. 37 - Prob. 31PCh. 37 - Prob. 32PCh. 37 - Prob. 33PCh. 37 - Prob. 34PCh. 37 - Prob. 35PCh. 37 - Prob. 36PCh. 37 - Prob. 37PCh. 37 - Prob. 38PCh. 37 - Prob. 39PCh. 37 - Prob. 40PCh. 37 - Prob. 41PCh. 37 - Prob. 42PCh. 37 - Prob. 43PCh. 37 - Prob. 44PCh. 37 - Prob. 45PCh. 37 - Prob. 46PCh. 37 - Prob. 47PCh. 37 - Prob. 48PCh. 37 - Prob. 49PCh. 37 - Prob. 50PCh. 37 - Prob. 51PCh. 37 - Prob. 52PCh. 37 - Prob. 53PCh. 37 - Prob. 54PCh. 37 - Prob. 55PCh. 37 - Prob. 56PCh. 37 - Prob. 57PCh. 37 - Prob. 58PCh. 37 - Prob. 59PCh. 37 - Prob. 60PCh. 37 - Prob. 61PCh. 37 - Prob. 62PCh. 37 - Prob. 63PCh. 37 - Prob. 64PCh. 37 - Prob. 65PCh. 37 - Prob. 66PCh. 37 - Prob. 67PCh. 37 - Prob. 68PCh. 37 - Prob. 69PCh. 37 - Prob. 70PCh. 37 - Prob. 71PCh. 37 - Prob. 72GPCh. 37 - Prob. 73GPCh. 37 - Prob. 74GPCh. 37 - Prob. 75GPCh. 37 - Prob. 76GPCh. 37 - Prob. 77GPCh. 37 - Prob. 78GPCh. 37 - Prob. 79GPCh. 37 - Prob. 80GPCh. 37 - Prob. 81GPCh. 37 - Prob. 82GPCh. 37 - Prob. 83GPCh. 37 - Prob. 84GPCh. 37 - Prob. 85GPCh. 37 - Prob. 86GPCh. 37 - Prob. 87GPCh. 37 - Prob. 88GPCh. 37 - Prob. 89GPCh. 37 - Prob. 90GPCh. 37 - Prob. 91GPCh. 37 - Prob. 92GPCh. 37 - Prob. 93GPCh. 37 - Show that the wavelength of a particle of mass m...Ch. 37 - Prob. 95GPCh. 37 - Prob. 96GPCh. 37 - Prob. 97GPCh. 37 - Prob. 98GPCh. 37 - Prob. 99GPCh. 37 - Prob. 100GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Chapter 39, Problem 043 In the ground state of the hydrogen atom, the electron has a total energy of -13.6 ev. What are (a) its kinetic energy and (b) its potential energy if the electron is a distance 4.0a from the central nucleus? Here a is the Bohr radius. (a) Number Units eV (b) Number Units eVarrow_forwardConsider a two-electron atom in which the electrons, orbiting a nucleus of charge+Ze, follow Bohr-like orbits of the same radius r, with the electrons always on opposite sides of the nucleus. (a) Show that the net force on each electron is toward the nucleus and has magnitude. (b) Use the fact that this is the centripetal force to show that the square of each electron’s orbital speed v is given by as attached.arrow_forwardDetermine the distance between the electron and proton in an atom if the potential energy U of the electron is 10.1 eV (electronvolt, 1 eV = 1.6 × 10-19 J). Give your answer in Angstrom (1 A = 10-10 m). Answer: Choose... +arrow_forward
- So Determine the distance between the electron and proton in an atom if the potential energy ?U of the electron is 15.4 eV (electronvolt, 1 eV =1.6×10−19=1.6×10−19 J). Give your answer in Angstrom (1 A = 10-10 m)arrow_forwardDetermine the distance between the electron and proton in an atom if the potential energy UU of the electron is 11 eV (electronvolt, 1 eV =1.6×10−19=1.6×10−19 J). Give your answer in Angstrom (1 A = 10-10 m).arrow_forwardThe velocity of electron in the first Bohr orbit of radius 0.5 A.U. is 2.24 x 106 m/s. Calculate the period of revolution of the electron in the same orbit.arrow_forward
- For a hydrogen atom in its ground state, use the Bohr model to compute the angular momentum of the electron.arrow_forwardAn electron is in the nth Bohr orbit of the hydrogen atom. (a) Show that the period of the electron is T = n3t0 and determine the numerical value of t0. (b) On average, an electron remains in the n = 2 orbit for approximately 10 ms before it jumps down to the n = 1 (ground-state) orbit. How many revolutions does the electron make in the excited state? (c) Define the period of one revolution as an electron year, analogous to an Earth year being the period of the Earth’s motion around the Sun. Explain whether we should think of the electron in the n = 2 orbit as “living for a long time.”arrow_forwardThe gravitational attraction between electron and proton in a hydrogen atom is weaker than the coulomb attraction by a factor of about 10-40. An alternative way of looking at this fact is to estimate the radius of the first Bohr orbit of a hydrogen atom if the electron and proton were bound by gravitational attraction. You will find the answer interesting.arrow_forward
- A hydrogen atom is in its first excited state (n = 2). Using the Bohr theory of the atom, calculate (a) the radius of the orbit, (b) the linear momentum of the electron, (c) the angular momentum of the electron, (d) the kinetic energy, (e) the potential energy, and (f) the total energy.arrow_forwardAn electron is in the hydrogen atom with n = 5. (a) Find the possible values of L and Lz for this electron, in units of h. (b) For each value of L, find all the possible angles between L → and the z-axis. (c) What are the maximum and minimum values of the magnitude of the angle between L →and the z-axis?arrow_forwardRecall that for practical purposes the number of orbits in the Bohr model of the hydrogen atom is limited to 7, however the model can in theory be extend to n = ∞. This idea of orbits beyond 7 is employed in the following question. Also it may be useful to know that 1 ∞2 = 0. The ionization energy associated with an atom equals the amount of energy required to strip a given electron away from its nucleus in the gaseous phase. For purposes of this question/calculation, if we consider the electron of a hydrogen atom in orbit n = 12 to be sufficiently removed from the nucleus, so as to be free of its electrostatic hold (i.e. to be stripped of its nucleus), what is the ionization energy for hydrogen in kJ/mol? Express your answer correctly rounded to 2 decimal places.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax