Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 37, Problem 78GP
To determine
The peak wavelength of the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Another theory of dark matter (there are many theories!) predicts that there is a particle in
the dark sector that is similar to the photon but has a small nonzero mass, which we call the
dark photon. The dark photon does not move at the speed of light, but slightly slower, at a
speed that depends on the wavelength. If the mass of the dark photon is 10-15 eV/c², what
is the wavelength of a dark photon that moves at a speed that is 99% the speed of light?
7
A) What is the approximate wavelength emitted from helium represented by the bright yellow emission line below? What is it's frequency in HZ and energy in eV? (1 eV= 1.6 x 10-19 joules).
B) If the excited helium electron that emits a yellow photon in this line starts with a potential energy of 8 eV, what is the potential energy of the electron afterwards? Assume that the emission of a yellow photon is allowed by the laws of quantum mechanics. Also don't worry about the other electron.
Suppose a proton is moving at 1.25 % of the speed of light.
a)Calculate the wavelength, in meters, of a photon that has the same momentum as this proton. b) What is the energy of the photon, in megaelectron volts? c) What is the kinetic energy of the proton, in megaelectron volts?
Chapter 37 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 37.2 - Prob. 1AECh. 37.2 - Prob. 1BECh. 37.4 - Prob. 1CECh. 37.7 - Prob. 1DECh. 37.7 - Prob. 1EECh. 37.11 - Prob. 1FECh. 37 - Prob. 1QCh. 37 - Prob. 2QCh. 37 - Prob. 3QCh. 37 - Prob. 4Q
Ch. 37 - Prob. 5QCh. 37 - Prob. 6QCh. 37 - Prob. 7QCh. 37 - Prob. 8QCh. 37 - Prob. 9QCh. 37 - Prob. 10QCh. 37 - Prob. 11QCh. 37 - Prob. 12QCh. 37 - Prob. 13QCh. 37 - Prob. 14QCh. 37 - Prob. 15QCh. 37 - Prob. 16QCh. 37 - Prob. 17QCh. 37 - Prob. 18QCh. 37 - Prob. 19QCh. 37 - Prob. 20QCh. 37 - Prob. 21QCh. 37 - Prob. 22QCh. 37 - Prob. 23QCh. 37 - Prob. 24QCh. 37 - Prob. 25QCh. 37 - Prob. 26QCh. 37 - Prob. 27QCh. 37 - Prob. 28QCh. 37 - Prob. 1PCh. 37 - Prob. 2PCh. 37 - Prob. 3PCh. 37 - Prob. 4PCh. 37 - Prob. 5PCh. 37 - Prob. 6PCh. 37 - Prob. 7PCh. 37 - Prob. 8PCh. 37 - Prob. 9PCh. 37 - Prob. 10PCh. 37 - Prob. 11PCh. 37 - Prob. 12PCh. 37 - Prob. 13PCh. 37 - Prob. 14PCh. 37 - Prob. 15PCh. 37 - Prob. 16PCh. 37 - Prob. 17PCh. 37 - Prob. 18PCh. 37 - Prob. 19PCh. 37 - Prob. 20PCh. 37 - Prob. 21PCh. 37 - Prob. 22PCh. 37 - Prob. 23PCh. 37 - Prob. 24PCh. 37 - Prob. 25PCh. 37 - Prob. 26PCh. 37 - Prob. 27PCh. 37 - Prob. 28PCh. 37 - Prob. 29PCh. 37 - Prob. 30PCh. 37 - Prob. 31PCh. 37 - Prob. 32PCh. 37 - Prob. 33PCh. 37 - Prob. 34PCh. 37 - Prob. 35PCh. 37 - Prob. 36PCh. 37 - Prob. 37PCh. 37 - Prob. 38PCh. 37 - Prob. 39PCh. 37 - Prob. 40PCh. 37 - Prob. 41PCh. 37 - Prob. 42PCh. 37 - Prob. 43PCh. 37 - Prob. 44PCh. 37 - Prob. 45PCh. 37 - Prob. 46PCh. 37 - Prob. 47PCh. 37 - Prob. 48PCh. 37 - Prob. 49PCh. 37 - Prob. 50PCh. 37 - Prob. 51PCh. 37 - Prob. 52PCh. 37 - Prob. 53PCh. 37 - Prob. 54PCh. 37 - Prob. 55PCh. 37 - Prob. 56PCh. 37 - Prob. 57PCh. 37 - Prob. 58PCh. 37 - Prob. 59PCh. 37 - Prob. 60PCh. 37 - Prob. 61PCh. 37 - Prob. 62PCh. 37 - Prob. 63PCh. 37 - Prob. 64PCh. 37 - Prob. 65PCh. 37 - Prob. 66PCh. 37 - Prob. 67PCh. 37 - Prob. 68PCh. 37 - Prob. 69PCh. 37 - Prob. 70PCh. 37 - Prob. 71PCh. 37 - Prob. 72GPCh. 37 - Prob. 73GPCh. 37 - Prob. 74GPCh. 37 - Prob. 75GPCh. 37 - Prob. 76GPCh. 37 - Prob. 77GPCh. 37 - Prob. 78GPCh. 37 - Prob. 79GPCh. 37 - Prob. 80GPCh. 37 - Prob. 81GPCh. 37 - Prob. 82GPCh. 37 - Prob. 83GPCh. 37 - Prob. 84GPCh. 37 - Prob. 85GPCh. 37 - Prob. 86GPCh. 37 - Prob. 87GPCh. 37 - Prob. 88GPCh. 37 - Prob. 89GPCh. 37 - Prob. 90GPCh. 37 - Prob. 91GPCh. 37 - Prob. 92GPCh. 37 - Prob. 93GPCh. 37 - Show that the wavelength of a particle of mass m...Ch. 37 - Prob. 95GPCh. 37 - Prob. 96GPCh. 37 - Prob. 97GPCh. 37 - Prob. 98GPCh. 37 - Prob. 99GPCh. 37 - Prob. 100GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Interstellar space is filled with radiation of wavelength 970µn. This radiation is considered to be a remnant of the “big bang.” What is the corresponding blackbody temperature of this radiation?arrow_forwardWhat is the momentum of a 4-cm microwave photon?arrow_forwardIn a supercollider at CERN, protons are accelerated to velocities of 0.25c. What are their wavelengths at this speed? What are their kinetic energies? If a beam of protons were to gain its kinetic energy in only one pass through a potential difference, how high would this potential difference have to be? (Rest mass energy of a proton is E0=938 MeV).arrow_forward
- (a) A -ray photon has a momentum of 8.001021kgm/s. What is its wavelength? (b) Calculate its energy in MeV.arrow_forwardAt what velocity does a proton have a 6.0-fm wavelength (about the size of a nucleus)? Give your answer in units of c.arrow_forwardPhotoelectrons from a material with a binding energy of 2.71 eV are ejected by 420-nm photons. Once ejected, how long does it take these electrons to travel 2.50 cm to a detection device?arrow_forward
- helparrow_forwardWhich of the following statements about a black body are true? Select one or more: a.The spectrum of the cosmic background radiation corresponds with great accuracy to the radiation of a black body at a temperature of 2.7 K. b.A black body absorbs all the radiation that hits it, and emits no radiation at all. c.According to Planck's radiation law (black body distribution), the wavelength corresponding to the maximum energy density of the radiation decreases (and the frequency increases) as the temperature increases. d.A black body reflects all the radiation that hits it, and absorbs no radiation at all.arrow_forwardAn electron traveling with a speed of 2.5 x 10^6 meters per second collides with a photon having a frequency of 1 x 10^16 hertz. After the collision, the photon has 3.18 x 10^-18 joule of energy. Determine the energy in joules of the photon before the collision.arrow_forward
- Imagine an alternate universe where the value of the Planck constant is 6.62607x10−4J·s. In that universe, which of the following objects would require quantum mechanics to describe, that is, would show both particle and wave properties? Which objects would act like everyday objects, and be adequately described by classical mechanics? A grain of sand with a mass of 135 mg, 515. µm wide, moving at 4.00 mm/s. An airplane with a mass of 1.75 x 104 kg, 15.0 m long, moving at 2300. km/h. An atom with a mass of 1.0 x 10-27 kg, 137. pm wide, moving at 394. m/s. A ball with a mass of 215. g, 4.1 cm wide, moving at 35.0 m/s.arrow_forwardThe blackbody radiation emitted from a furnace peaks at a wavelength of 2.5 10-6 m (0.0000025 m). What is the temperature inside the furnace? answer ... Karrow_forwardThe mass of an electron is 9.11 10-31 kg.A.) If the wavelength of an electron is 4.67 10-7 m, how fast is it moving?1557.457391 m/s B.) If an electron has a speed equal to 5.30 106 m/s, what is its wavelength?1.37232566e-10 marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning