Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 37, Problem 46P
To determine
The speed of the neutrons for the given conditions.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(i) Is an electron a particle? Is it a wave? Explain your answer citing relevant experimental evidence. Calculate the De-Broglie wavelength of an electron having a kinetic energy of 1000eV. Compare the result with wavelength of X-rays having the same energy.
(ii) The longest wavelength of light emitted by hydrogen in the Balmer series is 2, = 725
nm. In light from a distant galaxy, this wavelength is measured to be 2, = 1358 nm. Find
the speed at which the distant galaxy is receding from the earth.
%3D
(3) In order to study the atomic nucleus, we would like to observe the diffraction of particles
whose de Broglie wavelength is about the same size as the nuclear diameter, about 14 fm for
a heavy nucleus such as lead. What kinetic energy should we use if the diffracted particles
are
(a) electrons?
(b) Neutrons?
(c) Alpha particles (m = 4 u)?
Chapter 37 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 37.2 - Prob. 1AECh. 37.2 - Prob. 1BECh. 37.4 - Prob. 1CECh. 37.7 - Prob. 1DECh. 37.7 - Prob. 1EECh. 37.11 - Prob. 1FECh. 37 - Prob. 1QCh. 37 - Prob. 2QCh. 37 - Prob. 3QCh. 37 - Prob. 4Q
Ch. 37 - Prob. 5QCh. 37 - Prob. 6QCh. 37 - Prob. 7QCh. 37 - Prob. 8QCh. 37 - Prob. 9QCh. 37 - Prob. 10QCh. 37 - Prob. 11QCh. 37 - Prob. 12QCh. 37 - Prob. 13QCh. 37 - Prob. 14QCh. 37 - Prob. 15QCh. 37 - Prob. 16QCh. 37 - Prob. 17QCh. 37 - Prob. 18QCh. 37 - Prob. 19QCh. 37 - Prob. 20QCh. 37 - Prob. 21QCh. 37 - Prob. 22QCh. 37 - Prob. 23QCh. 37 - Prob. 24QCh. 37 - Prob. 25QCh. 37 - Prob. 26QCh. 37 - Prob. 27QCh. 37 - Prob. 28QCh. 37 - Prob. 1PCh. 37 - Prob. 2PCh. 37 - Prob. 3PCh. 37 - Prob. 4PCh. 37 - Prob. 5PCh. 37 - Prob. 6PCh. 37 - Prob. 7PCh. 37 - Prob. 8PCh. 37 - Prob. 9PCh. 37 - Prob. 10PCh. 37 - Prob. 11PCh. 37 - Prob. 12PCh. 37 - Prob. 13PCh. 37 - Prob. 14PCh. 37 - Prob. 15PCh. 37 - Prob. 16PCh. 37 - Prob. 17PCh. 37 - Prob. 18PCh. 37 - Prob. 19PCh. 37 - Prob. 20PCh. 37 - Prob. 21PCh. 37 - Prob. 22PCh. 37 - Prob. 23PCh. 37 - Prob. 24PCh. 37 - Prob. 25PCh. 37 - Prob. 26PCh. 37 - Prob. 27PCh. 37 - Prob. 28PCh. 37 - Prob. 29PCh. 37 - Prob. 30PCh. 37 - Prob. 31PCh. 37 - Prob. 32PCh. 37 - Prob. 33PCh. 37 - Prob. 34PCh. 37 - Prob. 35PCh. 37 - Prob. 36PCh. 37 - Prob. 37PCh. 37 - Prob. 38PCh. 37 - Prob. 39PCh. 37 - Prob. 40PCh. 37 - Prob. 41PCh. 37 - Prob. 42PCh. 37 - Prob. 43PCh. 37 - Prob. 44PCh. 37 - Prob. 45PCh. 37 - Prob. 46PCh. 37 - Prob. 47PCh. 37 - Prob. 48PCh. 37 - Prob. 49PCh. 37 - Prob. 50PCh. 37 - Prob. 51PCh. 37 - Prob. 52PCh. 37 - Prob. 53PCh. 37 - Prob. 54PCh. 37 - Prob. 55PCh. 37 - Prob. 56PCh. 37 - Prob. 57PCh. 37 - Prob. 58PCh. 37 - Prob. 59PCh. 37 - Prob. 60PCh. 37 - Prob. 61PCh. 37 - Prob. 62PCh. 37 - Prob. 63PCh. 37 - Prob. 64PCh. 37 - Prob. 65PCh. 37 - Prob. 66PCh. 37 - Prob. 67PCh. 37 - Prob. 68PCh. 37 - Prob. 69PCh. 37 - Prob. 70PCh. 37 - Prob. 71PCh. 37 - Prob. 72GPCh. 37 - Prob. 73GPCh. 37 - Prob. 74GPCh. 37 - Prob. 75GPCh. 37 - Prob. 76GPCh. 37 - Prob. 77GPCh. 37 - Prob. 78GPCh. 37 - Prob. 79GPCh. 37 - Prob. 80GPCh. 37 - Prob. 81GPCh. 37 - Prob. 82GPCh. 37 - Prob. 83GPCh. 37 - Prob. 84GPCh. 37 - Prob. 85GPCh. 37 - Prob. 86GPCh. 37 - Prob. 87GPCh. 37 - Prob. 88GPCh. 37 - Prob. 89GPCh. 37 - Prob. 90GPCh. 37 - Prob. 91GPCh. 37 - Prob. 92GPCh. 37 - Prob. 93GPCh. 37 - Show that the wavelength of a particle of mass m...Ch. 37 - Prob. 95GPCh. 37 - Prob. 96GPCh. 37 - Prob. 97GPCh. 37 - Prob. 98GPCh. 37 - Prob. 99GPCh. 37 - Prob. 100GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The Balmer series for hydrogen was discovered before either the Lyman or the Paschen series. Why?arrow_forward(10) i) Use the quantum mechanical kinetic energy operator T, = to find the kinetic energy of the first 2m dx? excited state of the Particle in a Box (with n = 2). ii) Then, use the relationship of kinetic energy and momentum (KE = p?/2m) to find an equation for the de Broglie wavelength of the particle in a one-dimensional box as a function only of the box length L and quantum number n. iii) Sketch the wavefunction in the box to verify that the expression you obtained in part ii) is correct.arrow_forwardAsaparrow_forward
- (I) What is the wavelength of a neutron (m 1.67 x 10-27 kg) traveling at 8.5 × 10ª m/s? ||arrow_forward(I) A proton is traveling with a speed of (8.660 ± 0.012) × 10° m/s. With what maximum precision can its position be ascertained? [Hint: Ap = m Av.]arrow_forwardConsider an electron with a (non-relativistic) kinetic energy of 1 eV. (i) What is the electron speed in m/s? What is the de Broglie wavelength of the electron? (ii) Consider a beam of 1 eV electrons incident on a pair of very thin slits, separated by a distance d, with an interference pattern seen on a screen 2 m beyond the slits. Find the value of d such that the position of the first off-center bright fringe of the pattern is located 0.5mm from the center of the pattern.arrow_forward
- (123) A parallel beam of fast-moving electrons is incident normally on a narrow slit. A fluorescent screen is placed at a large distance from the slit. If the speed of the electrons is increased, which of the following statements is correct? (1) Diffraction pattern is not observed on the screen in the case of electrons (2) The angular width of the central maximum of the diffraction pattern will inerease (3) The angular width of the central maximum will decrease (4) The angular width of the central maximum will be unaffectedarrow_forward(I) Suppose the wave function for an electron at time t = 0 is given by (x,0) = /2/L sin(57x/L). Which one of the following is the wave function at time t? (a) p(x, t) = Vž sin(57x/L) cos(Est/h) (b) p(x, t) = Vž sin(57x/L)e-iEst/h (c) Both (a) and (b) above are appropriate ways to write the wave function. (d) None of the above. (II) The wave function for an electron at timet =0 is given by (x,0) = /? sin(57x/L). Which one of the following is true about the probability density, |p(x, t)², after time t? (a) [h(x, t)* = { sin²(57x/L) cos²(Est/h). (b) |Þ(x, t)P = Z sin?(57x/L)e¬i2Est/h. (c) |Þ(x,t)[² = } sin (57x/L) which is time-independent. (d) None of the above. 4arrow_forward(4) (i) Light shining on a metal surface produces photoelectrons with a maximum kinetic energy of 2.0 eV. The light intensity is then doubled. Now what is the maximum kinetic energy of the photoelectrons, in eV? (ii) The detector in an ordinary digital camera is made of silicon. This detector works by the photoelectric effect. The longest wavelength of light that an ordinary digital camera can detect has a wavelength of 1 micron (where 1 micron = 10^-6 m). What is the work function of silicon, in eV? (iii) Infrared cameras don't use detectors made of silicon. For an infrared camera to detect infrared radiation with a wavelength of 22 microns, its detector must be made of a dierent material. What is the maximum possible work function of this material, in eV?arrow_forward
- 7) A particular laser oscillating at the resonant wavelength of 1 um has a M value of 1010. The photon number in the cavity at the threshold pumping rate is (Write the Answer as an integral number without using exponents)arrow_forward(i) Show that the classical Rayleigh-Jeans formula is a special case of Planck's radiation formula. (ii) Given a wave function of a particle as = Ae-ip/hy, confined such that 0arrow_forward(II) Show that the energy E (in electron volts) of a photon whose wavelength is A (nm) is given by 1.240 x 10° eV·nm E = λ (nm) Use at least 4 significant figures for values of h, c, e (see inside front cover).arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning