Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 37, Problem 17P
To determine
The maximum kinetic energy of the ejected electron.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(II) Show that the energy E (in electron volts) of a photon
whose wavelength is A (nm) is given by
1.240 x 10° eV·nm
E =
λ (nm)
Use at least 4 significant figures for values of h, c, e (see
inside front cover).
7) White light has wavelengths that range from 380 nm to 750 nm.
This light strikes a metal that has a work function of 2.28 eV.
(a) What is the maximum kinetic energy (in joules) of the
electrons that are emitted from the metal? (b) For what
wavelengths will no electrons be emitted?
range
of
II) What is the maximum kinetic energy of electronsejected from barium(Wo = 2.48eV) when illuminated bywhite light,λ =400 to 750 nm?
Chapter 37 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 37.2 - Prob. 1AECh. 37.2 - Prob. 1BECh. 37.4 - Prob. 1CECh. 37.7 - Prob. 1DECh. 37.7 - Prob. 1EECh. 37.11 - Prob. 1FECh. 37 - Prob. 1QCh. 37 - Prob. 2QCh. 37 - Prob. 3QCh. 37 - Prob. 4Q
Ch. 37 - Prob. 5QCh. 37 - Prob. 6QCh. 37 - Prob. 7QCh. 37 - Prob. 8QCh. 37 - Prob. 9QCh. 37 - Prob. 10QCh. 37 - Prob. 11QCh. 37 - Prob. 12QCh. 37 - Prob. 13QCh. 37 - Prob. 14QCh. 37 - Prob. 15QCh. 37 - Prob. 16QCh. 37 - Prob. 17QCh. 37 - Prob. 18QCh. 37 - Prob. 19QCh. 37 - Prob. 20QCh. 37 - Prob. 21QCh. 37 - Prob. 22QCh. 37 - Prob. 23QCh. 37 - Prob. 24QCh. 37 - Prob. 25QCh. 37 - Prob. 26QCh. 37 - Prob. 27QCh. 37 - Prob. 28QCh. 37 - Prob. 1PCh. 37 - Prob. 2PCh. 37 - Prob. 3PCh. 37 - Prob. 4PCh. 37 - Prob. 5PCh. 37 - Prob. 6PCh. 37 - Prob. 7PCh. 37 - Prob. 8PCh. 37 - Prob. 9PCh. 37 - Prob. 10PCh. 37 - Prob. 11PCh. 37 - Prob. 12PCh. 37 - Prob. 13PCh. 37 - Prob. 14PCh. 37 - Prob. 15PCh. 37 - Prob. 16PCh. 37 - Prob. 17PCh. 37 - Prob. 18PCh. 37 - Prob. 19PCh. 37 - Prob. 20PCh. 37 - Prob. 21PCh. 37 - Prob. 22PCh. 37 - Prob. 23PCh. 37 - Prob. 24PCh. 37 - Prob. 25PCh. 37 - Prob. 26PCh. 37 - Prob. 27PCh. 37 - Prob. 28PCh. 37 - Prob. 29PCh. 37 - Prob. 30PCh. 37 - Prob. 31PCh. 37 - Prob. 32PCh. 37 - Prob. 33PCh. 37 - Prob. 34PCh. 37 - Prob. 35PCh. 37 - Prob. 36PCh. 37 - Prob. 37PCh. 37 - Prob. 38PCh. 37 - Prob. 39PCh. 37 - Prob. 40PCh. 37 - Prob. 41PCh. 37 - Prob. 42PCh. 37 - Prob. 43PCh. 37 - Prob. 44PCh. 37 - Prob. 45PCh. 37 - Prob. 46PCh. 37 - Prob. 47PCh. 37 - Prob. 48PCh. 37 - Prob. 49PCh. 37 - Prob. 50PCh. 37 - Prob. 51PCh. 37 - Prob. 52PCh. 37 - Prob. 53PCh. 37 - Prob. 54PCh. 37 - Prob. 55PCh. 37 - Prob. 56PCh. 37 - Prob. 57PCh. 37 - Prob. 58PCh. 37 - Prob. 59PCh. 37 - Prob. 60PCh. 37 - Prob. 61PCh. 37 - Prob. 62PCh. 37 - Prob. 63PCh. 37 - Prob. 64PCh. 37 - Prob. 65PCh. 37 - Prob. 66PCh. 37 - Prob. 67PCh. 37 - Prob. 68PCh. 37 - Prob. 69PCh. 37 - Prob. 70PCh. 37 - Prob. 71PCh. 37 - Prob. 72GPCh. 37 - Prob. 73GPCh. 37 - Prob. 74GPCh. 37 - Prob. 75GPCh. 37 - Prob. 76GPCh. 37 - Prob. 77GPCh. 37 - Prob. 78GPCh. 37 - Prob. 79GPCh. 37 - Prob. 80GPCh. 37 - Prob. 81GPCh. 37 - Prob. 82GPCh. 37 - Prob. 83GPCh. 37 - Prob. 84GPCh. 37 - Prob. 85GPCh. 37 - Prob. 86GPCh. 37 - Prob. 87GPCh. 37 - Prob. 88GPCh. 37 - Prob. 89GPCh. 37 - Prob. 90GPCh. 37 - Prob. 91GPCh. 37 - Prob. 92GPCh. 37 - Prob. 93GPCh. 37 - Show that the wavelength of a particle of mass m...Ch. 37 - Prob. 95GPCh. 37 - Prob. 96GPCh. 37 - Prob. 97GPCh. 37 - Prob. 98GPCh. 37 - Prob. 99GPCh. 37 - Prob. 100GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Show that Stefan’s law results from Planck’s radiation law. Hin: To compute the total power of blackbody radiation emitted across the entire spectrum of wavelengths at a given temperature, integrate Planck’s law over the entire spectrum P(T)=0I(,T)d. Use the substitution x=hckT and the tabulated value of the integral 0dx x 3( e x 1)=415arrow_forwardi) Find the de Broglie wavelengths of a) an electron (m₂ = 9.1 x 10-31 kg) accelerated through a potential difference of 170 volts, and b) A 350 gm baseball moving with a speed of 200 m/s. Comparing the results explain why the wave nature of matter is not more apparent in daily observationsarrow_forward(i) How does one explain the emission of electrons from a photosensitive surface with the help of Einstein’s photoelectric equation? (ii) The work function of the following metals is given : Na = 2.75 eV, K = 2.3 eV, Mo = 4.17 eV and Ni 5.15 eV. Which of these metals will not cause photoelectric emission for radiation of wavelength 3300 A from a laser source placed 1 m away from these metals? What happens if the laser source is brought nearer and placed 50 cm away?arrow_forward
- (c) The energy of an ultraviolet light is 3.28 eV. (i) What is its wavelength? (Given: h=6.63✕10-34 Js ; e=1.602✕10-19 C). (ii) Based on the de Broglie's hypothesis, determine the velocity of the electron. (Given: h=6.63✕10-34 Js ; me=9.11✕10-31 kg).arrow_forward- (i) Calculate the Amin and Amax region of 70 kV X-ray tube. (ii) Calculate the maximum frequency of an X-ray caused by an electron travelling with 60000 eV of kinetic energy?arrow_forward(4) (i) Light shining on a metal surface produces photoelectrons with a maximum kinetic energy of 2.0 eV. The light intensity is then doubled. Now what is the maximum kinetic energy of the photoelectrons, in eV? (ii) The detector in an ordinary digital camera is made of silicon. This detector works by the photoelectric effect. The longest wavelength of light that an ordinary digital camera can detect has a wavelength of 1 micron (where 1 micron = 10^-6 m). What is the work function of silicon, in eV? (iii) Infrared cameras don't use detectors made of silicon. For an infrared camera to detect infrared radiation with a wavelength of 22 microns, its detector must be made of a dierent material. What is the maximum possible work function of this material, in eV?arrow_forward
- (b) Evaluate the ratio of the de Broglie wavelength of electron to that of proton when (m₂=9.11 × 10-3¹ kg, mp=1.67 × 10-27 kg) (i) both have the same kinetic energy. (ii) The electron kinetic energy is 1000 eV, and the proton kineticarrow_forward(ii) The longest wavelength of light emitted by hydrogen in the Balmer series is 2, = 725 nm. In light from a distant galaxy, this wavelength is measured to be 2, = 1358 nm. Find the speed at which the distant galaxy is receding from the earth. %3Darrow_forward(b) (i) Calculate the de Broglie wavelength of an electron having a mass of 9.11 x 1031 kg and a charge of 1.602 x 10-19 J with a Kinetic energy of 135 eV. The value of the Planck's constant is equal to 6.63 * 10-34 Js. (ii) Assume that an electron is moving along the x-axis with a speed of 3.66 x 106 m/s and with a precision of 0.50%. Calculate the minimum uncertainty (as allowed by the uncertainty principle in quantum theory) with which the position of the electron along the X-axis simultaneously can be measured with the speed?arrow_forward
- (i) Monochromatic light of frequency 6.0 × 1014 Hz is produced by a laser. The power emitted is 2.0 × 10-3 W. Estimate the number of photons emitted per second on an average by the source. (ii) Draw a plot showing the variation of photoelectric current versus the intensity of incident radiation on a given photosensitive surface.arrow_forward3-47. Data for stopping potential versus wavelength for the photoelectric effect using sodium are λ nm V₁ V 200 300 400 500 600 2.06 1.05 0.41 0.03 4.20arrow_forward(b) Electromagnetic radiations having 400 nm wavelength falls on the surface of potassium, it resulted into the electrons emission with a K.E. of 1.79*105 Jmol'. Calculate the minimum energy required to remove an electron removal from potassium. Also determine the maximum wavelength needed for the emission of a photoelectron.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax