Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 37, Problem 97GP
(a)
To determine
The mathematical combination of fundamental constants that has the dimension of time.
(b)
To determine
The numerical value of
(c)
To determine
The mathematical combination of the fundamental constants that has the dimension of length.
(d)
To determine
The numerical value of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An angle is measured to be 29.0±0.4deg. What is the absolute uncertainty in the sine of the angle?
What is the absolute uncertainty in the cosine of the angle?
(89)
X 0
馄.all 89% 12:40 PM
Homework 1
PHYs 2100-09-LAB, SPRING 2019
NAME
CIN
Question 1. A bird flies a distance of d- 150+3 m during a time 20.0+1.0 s
The average speed of the bird is u-d/t = 7.5 m/s. what is the uncertainty of u?
Question 2. Suppose that we're able to eliminate the uncertainty in our time mea-
surement so that t = 20.0 ±0.0 s. What is the new uncertainty of u?
A student is examining a bacterium under the microscope. The E. coli bacterial cell has a mass of m = 0.300 fg (where a femtogram, fg, is 10−15g) and is swimming at a velocity of v = 9.00 μm/s , with an uncertainty in the velocity of 6.00 % . E. coli bacterial cells are around 1 μm ( 10−6 m) in length. The student is supposed to observe the bacterium and make a drawing. However, the student, having just learned about the Heisenberg uncertainty principle in physics class, complains that she cannot make the drawing. She claims that the uncertainty of the bacterium's position is greater than the microscope's viewing field, and the bacterium is thus impossible to locate. What is the uncertainty of the position of the bacterium? Express your answer with the appropriate units (m).
Chapter 37 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 37.2 - Prob. 1AECh. 37.2 - Prob. 1BECh. 37.4 - Prob. 1CECh. 37.7 - Prob. 1DECh. 37.7 - Prob. 1EECh. 37.11 - Prob. 1FECh. 37 - Prob. 1QCh. 37 - Prob. 2QCh. 37 - Prob. 3QCh. 37 - Prob. 4Q
Ch. 37 - Prob. 5QCh. 37 - Prob. 6QCh. 37 - Prob. 7QCh. 37 - Prob. 8QCh. 37 - Prob. 9QCh. 37 - Prob. 10QCh. 37 - Prob. 11QCh. 37 - Prob. 12QCh. 37 - Prob. 13QCh. 37 - Prob. 14QCh. 37 - Prob. 15QCh. 37 - Prob. 16QCh. 37 - Prob. 17QCh. 37 - Prob. 18QCh. 37 - Prob. 19QCh. 37 - Prob. 20QCh. 37 - Prob. 21QCh. 37 - Prob. 22QCh. 37 - Prob. 23QCh. 37 - Prob. 24QCh. 37 - Prob. 25QCh. 37 - Prob. 26QCh. 37 - Prob. 27QCh. 37 - Prob. 28QCh. 37 - Prob. 1PCh. 37 - Prob. 2PCh. 37 - Prob. 3PCh. 37 - Prob. 4PCh. 37 - Prob. 5PCh. 37 - Prob. 6PCh. 37 - Prob. 7PCh. 37 - Prob. 8PCh. 37 - Prob. 9PCh. 37 - Prob. 10PCh. 37 - Prob. 11PCh. 37 - Prob. 12PCh. 37 - Prob. 13PCh. 37 - Prob. 14PCh. 37 - Prob. 15PCh. 37 - Prob. 16PCh. 37 - Prob. 17PCh. 37 - Prob. 18PCh. 37 - Prob. 19PCh. 37 - Prob. 20PCh. 37 - Prob. 21PCh. 37 - Prob. 22PCh. 37 - Prob. 23PCh. 37 - Prob. 24PCh. 37 - Prob. 25PCh. 37 - Prob. 26PCh. 37 - Prob. 27PCh. 37 - Prob. 28PCh. 37 - Prob. 29PCh. 37 - Prob. 30PCh. 37 - Prob. 31PCh. 37 - Prob. 32PCh. 37 - Prob. 33PCh. 37 - Prob. 34PCh. 37 - Prob. 35PCh. 37 - Prob. 36PCh. 37 - Prob. 37PCh. 37 - Prob. 38PCh. 37 - Prob. 39PCh. 37 - Prob. 40PCh. 37 - Prob. 41PCh. 37 - Prob. 42PCh. 37 - Prob. 43PCh. 37 - Prob. 44PCh. 37 - Prob. 45PCh. 37 - Prob. 46PCh. 37 - Prob. 47PCh. 37 - Prob. 48PCh. 37 - Prob. 49PCh. 37 - Prob. 50PCh. 37 - Prob. 51PCh. 37 - Prob. 52PCh. 37 - Prob. 53PCh. 37 - Prob. 54PCh. 37 - Prob. 55PCh. 37 - Prob. 56PCh. 37 - Prob. 57PCh. 37 - Prob. 58PCh. 37 - Prob. 59PCh. 37 - Prob. 60PCh. 37 - Prob. 61PCh. 37 - Prob. 62PCh. 37 - Prob. 63PCh. 37 - Prob. 64PCh. 37 - Prob. 65PCh. 37 - Prob. 66PCh. 37 - Prob. 67PCh. 37 - Prob. 68PCh. 37 - Prob. 69PCh. 37 - Prob. 70PCh. 37 - Prob. 71PCh. 37 - Prob. 72GPCh. 37 - Prob. 73GPCh. 37 - Prob. 74GPCh. 37 - Prob. 75GPCh. 37 - Prob. 76GPCh. 37 - Prob. 77GPCh. 37 - Prob. 78GPCh. 37 - Prob. 79GPCh. 37 - Prob. 80GPCh. 37 - Prob. 81GPCh. 37 - Prob. 82GPCh. 37 - Prob. 83GPCh. 37 - Prob. 84GPCh. 37 - Prob. 85GPCh. 37 - Prob. 86GPCh. 37 - Prob. 87GPCh. 37 - Prob. 88GPCh. 37 - Prob. 89GPCh. 37 - Prob. 90GPCh. 37 - Prob. 91GPCh. 37 - Prob. 92GPCh. 37 - Prob. 93GPCh. 37 - Show that the wavelength of a particle of mass m...Ch. 37 - Prob. 95GPCh. 37 - Prob. 96GPCh. 37 - Prob. 97GPCh. 37 - Prob. 98GPCh. 37 - Prob. 99GPCh. 37 - Prob. 100GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the absolute uncertainty of A + B?arrow_forwardWhat is the uncertainty in the temperature difference, ΔT, between the two temperature T1 = (25.0 ± 0.5) oC and T2 = (30.0 ± 0.3) oC?arrow_forwarda) What is the wavelength lambda (m) of green light having a frequency of 5.7 x 10^14 Hz. b). Determine the energy (J) of each photon of the green light using the formula E = hf, where E is energy in Joules, h is Planck's constant (6.62 x 10^-34 J/s) and f is frequency in Hz.arrow_forward
- Refer to the figure below. A rectangular current loop, with dimensions a= 5cm and b=4cm, is pivoted around the z-axis with an angle = 30° to the y-axis. The current l=2mA is directed by the red arrows as shown. Assume a magnetic field B=2 a T. Determine the torque. Z y aarrow_forwardA bullet is fired from a gun. The bullet travels a distance L = 160 ± 0.5 m during a time interval t= 0.4 ± 0.05 s. . The speed of the bullet (in m/s) can be calculated using the formula, Speed = L/t. Calculate the, a) Speed of the bullet (in m/s) = b) Fractional uncertainty in the speed = c) Absolute uncertainty (in m/s) in the speedarrow_forwardA student makes the following measurements in the lab: x = 2.51 ± 0.01 cm y = 1.0592 ± 0.0005 cm z = 4.939 ± 0.002 cm The experiment requires that the student calculates the quantity q = xyz^2 + x^1/2y^2z^3/2. Calculate the q and its uncertaintyarrow_forward
- 07.1. Given the following values for P₁, P2, and 1₁AL₁, calculate AH₂: (a) P₁(0, 0, 2), P₂(4, 2, 0), 27a-A-m; (b) P, (0, 2, 0), P₂(4, 2, 3), 27a₂A-m; (c) P₁(1, 2, 3), P₂(-3,-1, 2), 27(-a, +a, +2a₂)µA-m.arrow_forward3. The equation 1.45 in our textbook says that the de Broglie wavelength as a function of temperature is given by 1 Assuming the accepted accuracy for h, R, and m are very high, what is the V3MRT maximum uncertainty in the de Broglie wavelength if AT is the uncertainty in temperature?arrow_forwardA bullet is fired from a gun. The bullet travels a distance L = 190 ± 0.5 m during a time interval t= 0.5 t 0.04 s. The speed of the bullet (in m/s) can be calculated using the formula, Speed = L/t. %3D Calculate the, a) Speed of the bullet (in m/s) = b) Fractional uncertainty in the speed = c) Absolute uncertainty (in m/s) in the speed =arrow_forward
- find the absolute uncertainty in d. d= (10^((m-M+5)/5))/10^6 m=13.78 M=-18.78 error in both m and M= +/-0.02 d= 32.50873arrow_forwardIf an orange has a mass of 0.273 kg, calculate how many oranges it would take to equal the mass of the earth (5.98 × 1024 kg). Express the results in terms of NA.arrow_forwardIn the theory of relativity, the energy of a particle is E = /mở c* + h*c*/X² where mo is the rest mass of the particle, A is its wave length, and h is Planck's constant. Sketch the graph of E as a function of A. What does the graph say about the energy?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON