Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 37, Problem 6P
To determine
Energy of photons.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(3) A spectrometer used in a measurement of the Compton effect has a spectral resolution of
Aλ/2 = 0.5%. Find the wavelength of the incident photons that would be required in order to
resolve
(a) Scattered photons at an angle of 38°
(b) Scattered photons at an angle of 90°
(c) Comparing parts (a) and (b), which measurement is easier, keeping in mind that it is
harder to make higher energy photons? What factor can you think of that might make the
measurement at 0= 90° harder than the measurement at 0= 38°?
(i) Monochromatic light of frequency 6.0 × 1014 Hz is produced by a laser. The power emitted is 2.0 × 10-3 W. Estimate the number of photons emitted per second on an average by the source.
(ii) Draw a plot showing the variation of photoelectric current versus the intensity of incident radiation on a given photosensitive surface.
(I) A high-frequency photon is scattered off of an electronand experiences a change of wavelength of 1. x 10 -4nmAt what angle must a detector be placed to detect the scatteredphoton (relative to the direction of the incoming photon)?
Chapter 37 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 37.2 - Prob. 1AECh. 37.2 - Prob. 1BECh. 37.4 - Prob. 1CECh. 37.7 - Prob. 1DECh. 37.7 - Prob. 1EECh. 37.11 - Prob. 1FECh. 37 - Prob. 1QCh. 37 - Prob. 2QCh. 37 - Prob. 3QCh. 37 - Prob. 4Q
Ch. 37 - Prob. 5QCh. 37 - Prob. 6QCh. 37 - Prob. 7QCh. 37 - Prob. 8QCh. 37 - Prob. 9QCh. 37 - Prob. 10QCh. 37 - Prob. 11QCh. 37 - Prob. 12QCh. 37 - Prob. 13QCh. 37 - Prob. 14QCh. 37 - Prob. 15QCh. 37 - Prob. 16QCh. 37 - Prob. 17QCh. 37 - Prob. 18QCh. 37 - Prob. 19QCh. 37 - Prob. 20QCh. 37 - Prob. 21QCh. 37 - Prob. 22QCh. 37 - Prob. 23QCh. 37 - Prob. 24QCh. 37 - Prob. 25QCh. 37 - Prob. 26QCh. 37 - Prob. 27QCh. 37 - Prob. 28QCh. 37 - Prob. 1PCh. 37 - Prob. 2PCh. 37 - Prob. 3PCh. 37 - Prob. 4PCh. 37 - Prob. 5PCh. 37 - Prob. 6PCh. 37 - Prob. 7PCh. 37 - Prob. 8PCh. 37 - Prob. 9PCh. 37 - Prob. 10PCh. 37 - Prob. 11PCh. 37 - Prob. 12PCh. 37 - Prob. 13PCh. 37 - Prob. 14PCh. 37 - Prob. 15PCh. 37 - Prob. 16PCh. 37 - Prob. 17PCh. 37 - Prob. 18PCh. 37 - Prob. 19PCh. 37 - Prob. 20PCh. 37 - Prob. 21PCh. 37 - Prob. 22PCh. 37 - Prob. 23PCh. 37 - Prob. 24PCh. 37 - Prob. 25PCh. 37 - Prob. 26PCh. 37 - Prob. 27PCh. 37 - Prob. 28PCh. 37 - Prob. 29PCh. 37 - Prob. 30PCh. 37 - Prob. 31PCh. 37 - Prob. 32PCh. 37 - Prob. 33PCh. 37 - Prob. 34PCh. 37 - Prob. 35PCh. 37 - Prob. 36PCh. 37 - Prob. 37PCh. 37 - Prob. 38PCh. 37 - Prob. 39PCh. 37 - Prob. 40PCh. 37 - Prob. 41PCh. 37 - Prob. 42PCh. 37 - Prob. 43PCh. 37 - Prob. 44PCh. 37 - Prob. 45PCh. 37 - Prob. 46PCh. 37 - Prob. 47PCh. 37 - Prob. 48PCh. 37 - Prob. 49PCh. 37 - Prob. 50PCh. 37 - Prob. 51PCh. 37 - Prob. 52PCh. 37 - Prob. 53PCh. 37 - Prob. 54PCh. 37 - Prob. 55PCh. 37 - Prob. 56PCh. 37 - Prob. 57PCh. 37 - Prob. 58PCh. 37 - Prob. 59PCh. 37 - Prob. 60PCh. 37 - Prob. 61PCh. 37 - Prob. 62PCh. 37 - Prob. 63PCh. 37 - Prob. 64PCh. 37 - Prob. 65PCh. 37 - Prob. 66PCh. 37 - Prob. 67PCh. 37 - Prob. 68PCh. 37 - Prob. 69PCh. 37 - Prob. 70PCh. 37 - Prob. 71PCh. 37 - Prob. 72GPCh. 37 - Prob. 73GPCh. 37 - Prob. 74GPCh. 37 - Prob. 75GPCh. 37 - Prob. 76GPCh. 37 - Prob. 77GPCh. 37 - Prob. 78GPCh. 37 - Prob. 79GPCh. 37 - Prob. 80GPCh. 37 - Prob. 81GPCh. 37 - Prob. 82GPCh. 37 - Prob. 83GPCh. 37 - Prob. 84GPCh. 37 - Prob. 85GPCh. 37 - Prob. 86GPCh. 37 - Prob. 87GPCh. 37 - Prob. 88GPCh. 37 - Prob. 89GPCh. 37 - Prob. 90GPCh. 37 - Prob. 91GPCh. 37 - Prob. 92GPCh. 37 - Prob. 93GPCh. 37 - Show that the wavelength of a particle of mass m...Ch. 37 - Prob. 95GPCh. 37 - Prob. 96GPCh. 37 - Prob. 97GPCh. 37 - Prob. 98GPCh. 37 - Prob. 99GPCh. 37 - Prob. 100GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (I) What is the wavelength of a neutron (m 1.67 x 10-27 kg) traveling at 8.5 × 10ª m/s? ||arrow_forward3) A proton is moving with 10^8 m/s speed. Find the De Broglie wavelength associated with the proton and the frequency of that wave.arrow_forward15.(a)What is the frequency of an x-ray photon whose momentum is 1.1x 1023 kg m/s? (b) How much energy must a photon have if it is to have the momentum of a 10-MeV proton?arrow_forward
- (b) A sodium vapor lamp is placed at the center of a large sphere that absorbs all the light reaching it. The rate at which the lamp emits energy is 80 W; assume that the emission is entirely at a wavelength of 380 nm. Evaluate the rate at which the photon is absorbed by the lamp. Take, Planck Constant h = 6.63 x 10-34 J.S Speed of light c = 3.00 x 108m/sarrow_forward(a) If the average frequency emitted by a 120 W light bulb is 5.00 * 10^14 Hz and 10.0% of the input power is emitted as visible light, approximately how many visible-light photons are emitted per second? (b) At what distance would this correspond to 1.00 * 10^11 visible-light photons per cm2 per second if the light is emitted uniformly in all directions?arrow_forward(a) If the power output of a 670 kHz radio station is 49.0 kW, how many photons per second are produced? 1.1679e32 X How does power relate to energy? Review the relationship between energy and frequency of a photon. photons/s (b) If the radio waves are broadcast uniformly in all directions, find the number of photons per second per square meter at a distance of 125 km. Assume no reflection from the ground or absorption by the air. 2.138e21 If there is no reflection by the ground, what fraction of the radiated power reaches the receiver? What portion of the spherical surface do you need to consider here? photons/(s · m2) Additienel Mete nielarrow_forward
- (c) The energy of an ultraviolet light is 3.28 eV. (i) What is its wavelength? (Given: h=6.63✕10-34 Js ; e=1.602✕10-19 C). (ii) Based on the de Broglie's hypothesis, determine the velocity of the electron. (Given: h=6.63✕10-34 Js ; me=9.11✕10-31 kg)arrow_forward(A) Find the peak wavelength of the blackbody radiation emitted by the human body when the skin temperature is 35°C.arrow_forwardPlease do fast ASAP fastarrow_forward
- The Andromeda Nebula, at a distance of 2 x 102m from the Earth, radiates 8 x 10 W in the spectral line of frequency 1420 MHz. Estimate the number of photons received per second when the nebula is observed by a radio telescope of collecting area 100 m?.arrow_forward(a) If the power output of a 650-kHz radio station is 50.0 kW, how many photons per second are produced? (b) If the radio waves are broadcast uniformly in all directions, find the number of photons per second per square meter at a distance of 100 km. Assume no reflection from the ground orabsorption by the air.arrow_forward87 Show that AEIE, the fractional loss of energy of a photon dur- ing a collision with a particle of mass m, is given by mc2 (1 - cos ), where E is the energy of the incident photon, f' is the frequency of the scattered photon, and o is defined as in Fig. 38-5. AE hfarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning