a 0.15 m M₂ M3 HE D B 0.08 m M₁ A 10 b 0.15 m M2 M3 HE B D 0.08 m M₁ A Figure Q2. Bath shower mixer unit with water entering the system at point A and exiting through (a) spout located at point B and (b) shower head located at point C. Table 1. Loss coefficients for pipe fittings Loss coefficients for KL Gate valve fully opened 0.19 90° elbow 0.9 Tee along the main channel 0.4 Tee along branch 1.8 Part A: kg (a) Water at 20 °C (p = 998.3 and v = 1 × 10-6 m²/s) flows through a galvanised m³ iron pipe (k = 0.15 mm) with a diameter of 25 mm, entering the room at point A and discharging at point C from the fully opened gate valve B at a volumetric flow rate of 0.003 m³/s. Determine the required pressure at A, considering all the losses that occur in the system described in Figure Q1. Loss coefficients for pipe fittings have been provided in Table 1. [25 marks] (b) Due to corrosion within the pipe, the average flow velocity at C is observed to be V2 m/s after 10 years of operation whilst the pressure at A remains the same as determined in (a). Determine the average annual rate of growth of k within the pipe. [15 marks] 4₁ Figure Q1. Pipe system Page 2 25 mm
a 0.15 m M₂ M3 HE D B 0.08 m M₁ A 10 b 0.15 m M2 M3 HE B D 0.08 m M₁ A Figure Q2. Bath shower mixer unit with water entering the system at point A and exiting through (a) spout located at point B and (b) shower head located at point C. Table 1. Loss coefficients for pipe fittings Loss coefficients for KL Gate valve fully opened 0.19 90° elbow 0.9 Tee along the main channel 0.4 Tee along branch 1.8 Part A: kg (a) Water at 20 °C (p = 998.3 and v = 1 × 10-6 m²/s) flows through a galvanised m³ iron pipe (k = 0.15 mm) with a diameter of 25 mm, entering the room at point A and discharging at point C from the fully opened gate valve B at a volumetric flow rate of 0.003 m³/s. Determine the required pressure at A, considering all the losses that occur in the system described in Figure Q1. Loss coefficients for pipe fittings have been provided in Table 1. [25 marks] (b) Due to corrosion within the pipe, the average flow velocity at C is observed to be V2 m/s after 10 years of operation whilst the pressure at A remains the same as determined in (a). Determine the average annual rate of growth of k within the pipe. [15 marks] 4₁ Figure Q1. Pipe system Page 2 25 mm
Chapter2: The Kinetic Theory Of Gases
Section: Chapter Questions
Problem 55P: (a) Given that air is 21% oxygen, find the minimum atmospheric pressure that gives a relatively safe...
Related questions
Question

Transcribed Image Text:a
0.15 m
M₂
M3
HE
D
B
0.08 m
M₁
A
10
b
0.15 m
M2
M3
HE
B
D
0.08 m
M₁
A
Figure Q2. Bath shower mixer unit with water entering the system at point A and
exiting through (a) spout located at point B and (b) shower head located at point C.
Table 1. Loss coefficients for pipe fittings
Loss coefficients for
KL
Gate valve fully opened
0.19
90° elbow
0.9
Tee along the main channel
0.4
Tee along branch
1.8
![Part A:
kg
(a) Water at 20 °C (p = 998.3 and v = 1 × 10-6 m²/s) flows through a galvanised
m³
iron pipe (k = 0.15 mm) with a diameter of 25 mm, entering the room at point A and
discharging at point C from the fully opened gate valve B at a volumetric flow rate of
0.003 m³/s. Determine the required pressure at A, considering all the losses that occur
in the system described in Figure Q1. Loss coefficients for pipe fittings have been
provided in Table 1.
[25 marks]
(b) Due to corrosion within the pipe, the average flow velocity at C is observed to be
V2 m/s after 10 years of operation whilst the pressure at A remains the same as
determined in (a). Determine the average annual rate of growth of k within the pipe.
[15 marks]
4₁
Figure Q1. Pipe system
Page 2
25 mm](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F0074ccac-c137-4c22-99f9-f93bcd30eb64%2F33c5140e-3cb9-4330-b736-6606eccf9aff%2Fczwt2fa_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Part A:
kg
(a) Water at 20 °C (p = 998.3 and v = 1 × 10-6 m²/s) flows through a galvanised
m³
iron pipe (k = 0.15 mm) with a diameter of 25 mm, entering the room at point A and
discharging at point C from the fully opened gate valve B at a volumetric flow rate of
0.003 m³/s. Determine the required pressure at A, considering all the losses that occur
in the system described in Figure Q1. Loss coefficients for pipe fittings have been
provided in Table 1.
[25 marks]
(b) Due to corrosion within the pipe, the average flow velocity at C is observed to be
V2 m/s after 10 years of operation whilst the pressure at A remains the same as
determined in (a). Determine the average annual rate of growth of k within the pipe.
[15 marks]
4₁
Figure Q1. Pipe system
Page 2
25 mm
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 3 images

Recommended textbooks for you


Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning


Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning

Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning

Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning