Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 36, Problem 87P
Two yellow flowers are separated by 60 cm along a line perpendicular to your line of sight to the flowers. How far are you from the flowers when they are at the limit of resolution according to the Rayleigh criterion? Assume the light from the flowers has a single wavelength of 550 nm and that your pupil has a diameter of 5.5 mm.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The pupil of a person’s eye has a diameter of 5.00 mm. According to Rayleigh’s criterion, what distance apart must two small objects be if their images are just barely resolved when they are 250 mm from the eye? Assume they are illuminated with light of wavelength 500 nm.
The Michelson interferometer can be used to measure the index of refraction of a gas by placing an evacuated transparent tube in the light path along one arm of the device. Fringe shifts occur as the
gas is slowly added to the tube. Assume 580-nm light is used, the tube is 5.40 cm long, and 152 fringe shifts occur as the pressure of the gas in the tube increases to atmospheric pressure. What is
the index of refraction of the gas? Hint: The fringe shifts occur because the wavelength of the light changes inside the gas-filled tube. (Give your answer to five decimal places.)
4.0
If you look at something 40 m from you, what is the smallest length (perpendicular to your line of sight) that you can resolve, according to Rayleigh’s criterion? Assume the pupil of your eye has a diameter of 4.00 mm, and use 500 nm as the wavelength of the light reaching you.
Chapter 36 Solutions
Fundamentals of Physics Extended
Ch. 36 - You are conducting a single-slit diffraction...Ch. 36 - In a single-slit diffraction experiment, the top...Ch. 36 - For three experiments, Fig. 36-30 gives the...Ch. 36 - For three experiments, Fig. 36-31 gives versus...Ch. 36 - Figure 36-32 shows four choices for the...Ch. 36 - Prob. 6QCh. 36 - At night many people see rings called entoptic...Ch. 36 - a For a given diffraction grating, does the...Ch. 36 - Figure 36-33 shows a red line and a green line of...Ch. 36 - For the situation of Question 9 and Fig. 36-33, if...
Ch. 36 - a Figure 36-34a shows the lines produced by...Ch. 36 - Figure 36-35 shows the bright fringes that lie...Ch. 36 - In three arrangements you view two closely spaced...Ch. 36 - For a certain diffraction grating, the ratio /a of...Ch. 36 - GO The distance between the first and fifth minima...Ch. 36 - What must be the ratio of the slit width to the...Ch. 36 - A plane wave of wavelength 590 nm is incident on a...Ch. 36 - In conventional television, signals are broadcast...Ch. 36 - A single slit is illuminated by light of...Ch. 36 - Monochromatic light of wavelength 441 nm is...Ch. 36 - Light of wavelength 633 nm is incident on a narrow...Ch. 36 - Sound waves with frequency 3000 Hz and speed 343...Ch. 36 - SSM ILW A slit 1.00 mm wide is illuminated by...Ch. 36 - GO Manufacturers of wire and other objects of...Ch. 36 - A 0.10-mm-wide slit is illuminated by light of...Ch. 36 - Figure 36-38 gives versus the sine of the angle ...Ch. 36 - Monochromatic light with wavelength 538 nm is...Ch. 36 - In the single-slit diffraction experiment of Fig....Ch. 36 - SSM WWW The full width at half-maximum FWHM of a...Ch. 36 - Babinets principle. A monochromatic beam of...Ch. 36 - a Show that the values of a at which intensity...Ch. 36 - The wall of a large room is covered with acoustic...Ch. 36 - a How far from grains of red sand must you be to...Ch. 36 - The radar system of a navy cruiser transmits at a...Ch. 36 - SSM WWW Estimate the linear separation of two...Ch. 36 - Prob. 22PCh. 36 - SSM The two headlights of an approaching...Ch. 36 - Entoptic halos. If someone looks at a bright...Ch. 36 - ILW Find the separation of two points on the Moons...Ch. 36 - The telescopes on some commercial surveillance...Ch. 36 - If Superman really had x-ray vision at 0.10 nm...Ch. 36 - GO The wings of tiger beetles Fig. 36-41 are...Ch. 36 - a What is the angular separation of two stars if...Ch. 36 - GO Floaters. The floaters you see when viewing a...Ch. 36 - SSM Millimeter-wave radar generates a narrower...Ch. 36 - a A circular diaphragm 60 cm in diameter...Ch. 36 - Prob. 33PCh. 36 - Prob. 34PCh. 36 - Suppose that the central diffraction envelope of a...Ch. 36 - A beam of light of a single wavelength is incident...Ch. 36 - In a double-slit experiment, the slit separation d...Ch. 36 - In a certain two-slit interference pattern, 10...Ch. 36 - Light of wavelength 440 nm passes through a double...Ch. 36 - GO Figure 36-45 gives the parameter of Eq. 36-20...Ch. 36 - GO In the two-slit interference experiment of Fig....Ch. 36 - GO a In a double-slit experiment, what largest...Ch. 36 - SSM WWW a How many bright fringes appear between...Ch. 36 - Perhaps to confuse a predator, some tropical...Ch. 36 - A diffraction grating 20.0 mm wide has 6000...Ch. 36 - Visible light is incident perpendicularly on a...Ch. 36 - SSM ILW A grating has 400 lines/mm. How many...Ch. 36 - A diffraction grating is made up of slits of width...Ch. 36 - SSM WWW Light of wavelength 600 nm is incident...Ch. 36 - With light from a gaseous discharge tube incident...Ch. 36 - GO A diffraction grating having 180 lines/mm is...Ch. 36 - GO A beam of light consisting of wavelengths from...Ch. 36 - Prob. 53PCh. 36 - Derive this expression for the intensity pattern...Ch. 36 - SSM ILW A source containing a mixture of hydrogen...Ch. 36 - a How many rulings must a 4.00-cm-wide diffraction...Ch. 36 - Light at wavelength 589 nm from a sodium lamp is...Ch. 36 - A grating has 600 rulings/mm and is 5.0 mm wide. a...Ch. 36 - A diffraction grating with a width of 2.0 cm...Ch. 36 - Prob. 60PCh. 36 - With a particular grating the sodium doublet...Ch. 36 - A diffraction grating illuminated by monochromatic...Ch. 36 - Assume that the limits of the visible spectrum are...Ch. 36 - What is the smallest Bragg angle for x rays of...Ch. 36 - Prob. 65PCh. 36 - Prob. 66PCh. 36 - Prob. 67PCh. 36 - If first-order reflection occurs in a crystal at...Ch. 36 - X rays of wavelength 0.12 nm are found to undergo...Ch. 36 - Prob. 70PCh. 36 - Prob. 71PCh. 36 - Prob. 72PCh. 36 - Consider a two-dimensional square crystal...Ch. 36 - An astronaut in a space shuttle claims she can...Ch. 36 - SSM Visible light is incident perpendicularly on a...Ch. 36 - A beam of light consists of two wavelengths,...Ch. 36 - SSM In a single-slit diffraction experiment, there...Ch. 36 - GO A double-slit system with individual slit...Ch. 36 - SSM A diffraction grating has resolving power R =...Ch. 36 - The pupil of a persons eye has a diameter of 5.00...Ch. 36 - Prob. 81PCh. 36 - A grating with d = 1.50 m is illuminated at...Ch. 36 - SSM In two-slit interference, if the slit...Ch. 36 - GO In a two-slit interference pattern, what is the...Ch. 36 - A beam of light with a narrow wavelength range...Ch. 36 - If you look at something 40 m from you, what is...Ch. 36 - Two yellow flowers are separated by 60 cm along a...Ch. 36 - In a single-slit diffraction experiment, what must...Ch. 36 - A diffraction grating 3.00 cm wide produces the...Ch. 36 - A single-slit diffraction experiment is set up...Ch. 36 - A diffraction grating has 8900 slits across 1.20...Ch. 36 - In an experiment to monitor the Moons surface with...Ch. 36 - In June 1985, a laser beam was sent out from the...Ch. 36 - A diffraction grating 1.00 cm wide has 10 000...Ch. 36 - SSM If you double the width of a single slit, the...Ch. 36 - When monochromatic light is incident on a slit...Ch. 36 - A spy satellite orbiting at 160 km above Earths...Ch. 36 - Suppose that two points are separated by 2.0 cm....Ch. 36 - A diffraction grating has 200 lines/mm. Light...Ch. 36 - A diffraction grating has 200 rulings/mm, and it...Ch. 36 - Prob. 101PCh. 36 - Monochromatic light wavelength = 450 nm is...Ch. 36 - Light containing a mixture of two wavelengths, 500...Ch. 36 - Prob. 104PCh. 36 - Show that a grating made up of alternately...Ch. 36 - Light of wavelength 500 nm diffracts through a...Ch. 36 - If, in a two-slit interference pattern, there are...Ch. 36 - White light consisting of wavelengths from 400 nm...Ch. 36 - If we make d = a in Fig. 36-50, the two slits...Ch. 36 - Derive Eq. 36-28, the expression for the...Ch. 36 - Prob. 111PCh. 36 - How many orders of the entire visible spectrum...Ch. 36 - An acoustic double-slit system of slit separation...Ch. 36 - Two emission lines have wavelengths and ,...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Name the components (including muscles) of the thoracic cage. List the contents of the thorax.
Human Physiology: An Integrated Approach (8th Edition)
8. A human maintaining a vegan diet (containing no animal products) would be a:
a. producer
b. primary consume...
Human Biology: Concepts and Current Issues (8th Edition)
Choose the best answer to each of the following. Explain your reasoning. The number of stars in the Milky Way G...
Cosmic Perspective Fundamentals
The mammalian trachea and esophagus both connect to the (A) pharynx. (B) stomach. (C) large intestine. (D) rect...
Campbell Biology (11th Edition)
What two body structures contain flexible elastic cartilage?
Anatomy & Physiology (6th Edition)
53. This reaction was monitored as a function of time:
A plot of In[A] versus time yields a straight ...
Chemistry: Structure and Properties (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A horizontal laser beam of wavelength 632.8 nm has a circular cross section 2.00 nun in diameter. A rectangular aperture is to lie placed in the center of the beam so that when the light falls perpendicularly on a wall 4.50 m away, the central maximum fills a rectangle 110 mm wide and 6.00 mm high. The dimensions are measured between the minima bracketing the central maximum. Find the required (a) width and (b) height of the aperture. (c) Is the longer dimension of the central bright patch in the diffraction pattern horizontal or vertical? (d) Is the longer dimension of the aperture horizontal or vertical? (e) Explain the relationship between these two rectangles, using a diagram.arrow_forwardA Fraunhofer diffraction pattern is produced on a screen located 1.00 m from a single slit. If a light source of wavelength 5.00 107 m is used and the distance from the center of the central bright fringe to the first dark fringe is 5.00 103 m, what is the slit width? (a) 0.010 0 mm (b) 0.100 mm (c) 0.200 mm (d) 1.00 mm (e) 0.005 00 mmarrow_forwardLight enters a prism of crown glass and refracts at an angle of 5.00 with respect to the normal at the interface. The crown glass has a mean index of refraction of 1.51. It is combined with one flint glass prism (n = 1.65) to produce no net deviation. a. Find the apex angle of the flint glass. b. Assume the index of refraction for violet light (v = 430 nm) is nv = 1.528 and the index of refraction for red light (r = 768 nm) is nr = 1.511 for crown glass. For flint glass using the same wavelengths, nv = 1.665 and nr = 1.645. Find the net dispersion.arrow_forward
- A beam of 580-nm light passes through two closely spaced glass plates at close to normal incidence as shown in Figure P27.23. For what minimum nonzero value of the plate separation d is the transmitted light bright?arrow_forwardYou are asked to design a space telescope for earth orbit. When Jupiter is 5.93 * 10^8 km away (its closest approach to the earth), the telescope is to resolve, by Rayleigh’s criterion, features on Jupiter that are 250 km apart. What minimum-diameter mirror is required? Assume a wavelength of 500 nm.arrow_forwardA converging lens with a diameter of 30.0 cm forms an image of a satellite passing overhead. The satellite has two green lights (wavelength 500. nm) spaced 1.00 m apart. If the lights can just be resolved according to the Rayleigh criterion, what is the altitude of the satellite?arrow_forward
- A laser beam of intensity 1.03 x 103 W/m² with a wavelength of 576 nm is incident on an opaque screen with a tiny circular aperture of radius 1.01 x 107 m. Apply the Huygens-Fresnel principle to find the intensity of the diffracted light at a distance of 1.03 cm from the center of the aperture. 1.03e-08 W/m^2 Xarrow_forwardA thin sheet of transparent material has an index of refraction of 1.40 and is 15.0 µm thick. When it is inserted in the light path along one arm of an interferometer, how many fringe shifts occur in the pattern? Assume the wavelength (in a vac- uum) of the light used is 600 nm. Hint: The wavelength will change within the material.arrow_forwardThe two headlights of an approaching automobile are 1.3 m apart. At what (a) angular separation and (b) maximum distance will the eye resolve them? Assume that the pupil diameter is 5.0 mm, and use a wavelength of 514 nm for the light. Also assume that diffraction effects alone limit the resolution so that Rayleigh's criterion can be applied, in meters. (a) Number i Units (b) Number i Unitsarrow_forward
- Different isotopes of the same element emit light at slightly different wavelengths. A wavelength in the emission spectrum of a hydrogen atom is 656.45 nm; for deuterium, the corresponding wavelength is 656.27 nm. (a) What minimum number of slits is required to resolve these two wavelengths in second order? (b) If the grating has 500.00 slits/mm, find the angles and angular separation of these two wavelengths in the second orderarrow_forwardThe two headlights of an approaching automobile are 1.4 m apart. At what (a) angular separation and (b) maximum distance will the eye resolve them? Assume that the pupil diameter is 5.0 mm, and use a wavelength of 550 nm for the light. Also assume that diffraction effects alone limit the resolution so that Rayleigh’s criterion can be applied.arrow_forwardOne way to determine the index of refraction of a gas is to use an interferometer. As shown below, one of the beams of an interferometer passes through a glass container that has a length of L = 1.8 cm. Initially the glass container is a vacuum. When gas is slowly allowed into the container, a total of 6894 dark fringes move past the reference line. The laser has a wavelength of 635 nm (this is the wavelength when the light from the laser is moving through a vacuum). A.) Determine how many wavelengths will fit into the glass container when it is a vacuum. Since the light passes through the container twice, you need to determine how many wavelengths will fit into a glass container that has a length of 2L.number of wavelengths (vacuum) = B.) The number of dark fringes is the difference between the number of wavelengths that fit in the container (length of 2L) when it has gas and the number of wavelengths that fit in the container (length of 2L) when it is a vacuum. Use this knowledge to…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY