Concept explainers
In the single-slit diffraction experiment of Fig. 36-4, let the
Want to see the full answer?
Check out a sample textbook solutionChapter 36 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Organic Chemistry (8th Edition)
Fundamentals Of Thermodynamics
Applications and Investigations in Earth Science (9th Edition)
Campbell Biology in Focus (2nd Edition)
Living By Chemistry: First Edition Textbook
Campbell Biology (11th Edition)
- On a certain crystal, a first-order X-ray diffraction maximum is observed at an angle of 27.1° relative to its surface, using an X-ray source of unknown wavelength. Additionally, when illuminated with a different, this time of known wavelength 0.137 nm, a second-order maximum is detected at 37.3°. Determine (a) the spacing between the reflecting planes, and (b) the unknown wavelength.arrow_forwardBoth sides of a uniform film that has index of refraction n and thickness d are in contact with air. For normal incidence of light, an intensity minimum is observed in the reflected light at λ2 and an intensity maximum is observed at λ1, where λ1 > λ2. (a) Assuming no intensity minima are observed between λ1 and λ2, find an expression for the integer m in Equations 27.13 and 27.14 in terms of the wavelengths λ1 and λ2. (b) Assuming n = 1.40, λ1 = 500 nm, and λ2 = 370 nm, determine the best estimate for the thickness of the film.arrow_forwardAs a single crystal is rotated in an x-ray spectrometer (Fig. 3.22a), many parallel planes of atoms besides AA and BB produce strong diffracted beams. Two such planes are shown in Figure P3.38. (a) Determine geometrically the interplanar spacings d1 and d2 in terms of d0. (b) Find the angles (with respect to the surface plane AA) of the n = 1, 2, and 3 intensity maxima from planes with spacing d1. Let = 0.626 and d0 = 4.00 . Note that a given crystal structure (for example, cubic) has interplanar spacings with characteristic ratios, which produce characteristic diffraction patterns. In this way, measurement of the angular position of diffracted x-rays may be used to infer the crystal structure. Figure P3.38 Atomic planes in a cubic lattice.arrow_forward
- If bis Brewster’s angle for light reflected from the top of an interface between two substances, and bis Brewster’s angle for light reflected from below, prove that b+b=90.0arrow_forwardConsider a single-slit diffraction pattern for =589 nm, projected on a screen that is 1.00 m from a slit of width 0.25 mm. How far from the center of the pattern are the centers of the first and second dark fringes?arrow_forwardAn electric current through hydrogen gas produces several distinct wavelengths of visible light. What are the wavelengths of the hydrogen spectrum, if they form first-order maxima at angles 24.2°, 25.7°, 29.1°, and 41.0° when projected on a diffraction grating having 10,000 lines per centimeter?arrow_forward
- let a beam of x rays of wavelength 0.125 nm be incident on an NaCl crystal at angle u 45.0° to the top face of the crystal and a family of reflecting planes. Let the reflecting planes have separation d = 0.252 nm. The crystal is turned through angle f around an axis perpendicular to the plane of the page until these reflecting planes give diffraction maxima. What are the (a) smaller and (b) larger value of f if the crystal is turned clockwise and the (c) smaller and (d) larger value of f if it is turned counterclockwise?arrow_forwardProblem 5: Consider light that has its third minimum at an angle of 24.4° when it falls on a single slit of width 3.55 µm . Randomized Variables e = 24.4 ° w = 3.55 µm Find the wavelength of the light in nanometers. 2 = 789 E AAL 4 |5 | 6 1| 2 sin() cos() tan() HOME cotan() asin() acos() atan() acotan() sinh() 3 cosh() tanh() cotanh() END O Degrees O Radians vol BACKSPACE DEL CLEAR Submit I give up! Hint Feedbackarrow_forwardProblem 2: Consider light that has its third minimum at an angle of 23.6° when it falls on a single slit of width 3.55 μm. Randomized Variables 9 = 23.6° w = 3.55 um D Find the wavelength of the light in nanometers. λ=1 sin() cos() cotan() asin() atan() acotan() tanh() cosh() O Degrees Hints: 2% deduction per hint. Hints remaining: 2 Submit tan() JU acos() E sinh() cotanh() Radians Hint ( + 7 8 9 4 5 6 1 0 VO BACKSPACE Feedback 2 3 All content © 2022 Expert TA, LLC DEL HOME END I give up! Feedback: 2% deduction per feedback. CLEARarrow_forward
- To make a hologram using an Argon laser (1 = 0.488 µm), the maximum angle between objective and reference beams is 0max resolution (or spatial frequency) of the holographic recording film (fo – lines per mm)? 40°. What is the requirement on the minimum 0.633 um). Assume that z, When the hologram is reconstructed using a HeNe laser (A 10cm, z, = 2z,, Zp transversal and axial magnification (M; and Ma). = 00, please compute virtual and real image locations (Fz;), thearrow_forwardHow much diffraction spreading does a light beam undergo? One quantitative answer is the full width at half maximum of the central maximum of the single-slit Fraunhofer diffraction pattern. You can evaluate this angle of spreading in this problem. (a) as shown, define φ = πa sin φ/λ and show that at the point where I = 0.5Imax we must have φ = √2 sin φ. (b) Let y1 = sin φ and y2 = φ = /√2. Plot y1 and y2 on the same set of axes over a range from φ = 1 rad to φ = π/2 rad. Determine φ from the point of intersection of the two curves. (c) Then show that if the fraction λ/a is notlarge, the angular full width at half maximum of the central diffraction maximum is θ = 0.885λ/a. (d) What If? Another method to solve the transcendental equation φ = √2 sin φ in part (a) is to guess a first value of φ, use a computer or calculator to see how nearly it fits, and continue to update your estimate until the equation balances. How many steps(iterations) does this process take?arrow_forwardan x-ray beam of wavelengths from 95.0 to 140 pm is incident at u = 45.0° to a family of reflecting planes with spacing d= 275 pm.What are the (a) longest wavelength l and (b) associated order number m and the (c) shortest l and (d) associated m of the intensity maxima in the diffraction of the beam?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill