Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 36, Problem 83P
SSM In two-slit interference, if the slit separation is 14 µm and the slit widths are each 2.0 µm, (a) how many two-slit maxima are in the central peak of the diffraction envelope and (b) how many are in either of the first side peak of the diffraction envelope?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem 5: Consider a 525 nm light falling on a single slit of width 1.3 µm.
Randomized Variables
λ = 525 nm
w = 1.3 μm
At what angle (in degrees) is the first minimum for the light?
0 = ||
sin()
cos()
cotan()
asin()
atan() acotan()
cosh()
tanh()
O Degrees
tan()
acos()
sinh()
cotanh()
Radians
π
()
E ^^^ 4 5
1
2
7 8 9
6
3
*
+
0
VO BACKSPACE
DEL
HOME
END
CLEAR
Problem 1: In a double slit experiment the first minimum for 415 nm violet light is at an angle of 42°.
Randomized Variables
2 = 415 nm
e = 42 °
Find the distance between the two slits in micrometers.
d=
8 9
5 6
sin()
cos()
tan()
7
HOME
cotan()
asin()
acos()
E A 4
atan()
acotan()
sinh()
1
2
3
cosh()
tanh()
cotanh()
END
O Degrees O Radians
Vol BACKSPACE
DEL
CLEAR
+
SS-1 Coherent light of wavelength 675 nm passes through a narrow slit of width 0.0143 mm.
The diffraction pattern is projected onto a viewing screen 1.08 m away from the slit. The
intensity of the light at the center of the diffraction pattern is 175 W/m².
(a) Draw a picture of the of situation descried in this problem.
(b) Find the width of the central bright spot on the screen, in centimeters (cm).
(c) Find the distance between the center of the diffraction pattern and the m = 4
minimum on the screen, in cm.
(d) What is the intensity at a point on the screen 13.5 cm from the central maximum?
Chapter 36 Solutions
Fundamentals of Physics Extended
Ch. 36 - You are conducting a single-slit diffraction...Ch. 36 - In a single-slit diffraction experiment, the top...Ch. 36 - For three experiments, Fig. 36-30 gives the...Ch. 36 - For three experiments, Fig. 36-31 gives versus...Ch. 36 - Figure 36-32 shows four choices for the...Ch. 36 - Prob. 6QCh. 36 - At night many people see rings called entoptic...Ch. 36 - a For a given diffraction grating, does the...Ch. 36 - Figure 36-33 shows a red line and a green line of...Ch. 36 - For the situation of Question 9 and Fig. 36-33, if...
Ch. 36 - a Figure 36-34a shows the lines produced by...Ch. 36 - Figure 36-35 shows the bright fringes that lie...Ch. 36 - In three arrangements you view two closely spaced...Ch. 36 - For a certain diffraction grating, the ratio /a of...Ch. 36 - GO The distance between the first and fifth minima...Ch. 36 - What must be the ratio of the slit width to the...Ch. 36 - A plane wave of wavelength 590 nm is incident on a...Ch. 36 - In conventional television, signals are broadcast...Ch. 36 - A single slit is illuminated by light of...Ch. 36 - Monochromatic light of wavelength 441 nm is...Ch. 36 - Light of wavelength 633 nm is incident on a narrow...Ch. 36 - Sound waves with frequency 3000 Hz and speed 343...Ch. 36 - SSM ILW A slit 1.00 mm wide is illuminated by...Ch. 36 - GO Manufacturers of wire and other objects of...Ch. 36 - A 0.10-mm-wide slit is illuminated by light of...Ch. 36 - Figure 36-38 gives versus the sine of the angle ...Ch. 36 - Monochromatic light with wavelength 538 nm is...Ch. 36 - In the single-slit diffraction experiment of Fig....Ch. 36 - SSM WWW The full width at half-maximum FWHM of a...Ch. 36 - Babinets principle. A monochromatic beam of...Ch. 36 - a Show that the values of a at which intensity...Ch. 36 - The wall of a large room is covered with acoustic...Ch. 36 - a How far from grains of red sand must you be to...Ch. 36 - The radar system of a navy cruiser transmits at a...Ch. 36 - SSM WWW Estimate the linear separation of two...Ch. 36 - Prob. 22PCh. 36 - SSM The two headlights of an approaching...Ch. 36 - Entoptic halos. If someone looks at a bright...Ch. 36 - ILW Find the separation of two points on the Moons...Ch. 36 - The telescopes on some commercial surveillance...Ch. 36 - If Superman really had x-ray vision at 0.10 nm...Ch. 36 - GO The wings of tiger beetles Fig. 36-41 are...Ch. 36 - a What is the angular separation of two stars if...Ch. 36 - GO Floaters. The floaters you see when viewing a...Ch. 36 - SSM Millimeter-wave radar generates a narrower...Ch. 36 - a A circular diaphragm 60 cm in diameter...Ch. 36 - Prob. 33PCh. 36 - Prob. 34PCh. 36 - Suppose that the central diffraction envelope of a...Ch. 36 - A beam of light of a single wavelength is incident...Ch. 36 - In a double-slit experiment, the slit separation d...Ch. 36 - In a certain two-slit interference pattern, 10...Ch. 36 - Light of wavelength 440 nm passes through a double...Ch. 36 - GO Figure 36-45 gives the parameter of Eq. 36-20...Ch. 36 - GO In the two-slit interference experiment of Fig....Ch. 36 - GO a In a double-slit experiment, what largest...Ch. 36 - SSM WWW a How many bright fringes appear between...Ch. 36 - Perhaps to confuse a predator, some tropical...Ch. 36 - A diffraction grating 20.0 mm wide has 6000...Ch. 36 - Visible light is incident perpendicularly on a...Ch. 36 - SSM ILW A grating has 400 lines/mm. How many...Ch. 36 - A diffraction grating is made up of slits of width...Ch. 36 - SSM WWW Light of wavelength 600 nm is incident...Ch. 36 - With light from a gaseous discharge tube incident...Ch. 36 - GO A diffraction grating having 180 lines/mm is...Ch. 36 - GO A beam of light consisting of wavelengths from...Ch. 36 - Prob. 53PCh. 36 - Derive this expression for the intensity pattern...Ch. 36 - SSM ILW A source containing a mixture of hydrogen...Ch. 36 - a How many rulings must a 4.00-cm-wide diffraction...Ch. 36 - Light at wavelength 589 nm from a sodium lamp is...Ch. 36 - A grating has 600 rulings/mm and is 5.0 mm wide. a...Ch. 36 - A diffraction grating with a width of 2.0 cm...Ch. 36 - Prob. 60PCh. 36 - With a particular grating the sodium doublet...Ch. 36 - A diffraction grating illuminated by monochromatic...Ch. 36 - Assume that the limits of the visible spectrum are...Ch. 36 - What is the smallest Bragg angle for x rays of...Ch. 36 - Prob. 65PCh. 36 - Prob. 66PCh. 36 - Prob. 67PCh. 36 - If first-order reflection occurs in a crystal at...Ch. 36 - X rays of wavelength 0.12 nm are found to undergo...Ch. 36 - Prob. 70PCh. 36 - Prob. 71PCh. 36 - Prob. 72PCh. 36 - Consider a two-dimensional square crystal...Ch. 36 - An astronaut in a space shuttle claims she can...Ch. 36 - SSM Visible light is incident perpendicularly on a...Ch. 36 - A beam of light consists of two wavelengths,...Ch. 36 - SSM In a single-slit diffraction experiment, there...Ch. 36 - GO A double-slit system with individual slit...Ch. 36 - SSM A diffraction grating has resolving power R =...Ch. 36 - The pupil of a persons eye has a diameter of 5.00...Ch. 36 - Prob. 81PCh. 36 - A grating with d = 1.50 m is illuminated at...Ch. 36 - SSM In two-slit interference, if the slit...Ch. 36 - GO In a two-slit interference pattern, what is the...Ch. 36 - A beam of light with a narrow wavelength range...Ch. 36 - If you look at something 40 m from you, what is...Ch. 36 - Two yellow flowers are separated by 60 cm along a...Ch. 36 - In a single-slit diffraction experiment, what must...Ch. 36 - A diffraction grating 3.00 cm wide produces the...Ch. 36 - A single-slit diffraction experiment is set up...Ch. 36 - A diffraction grating has 8900 slits across 1.20...Ch. 36 - In an experiment to monitor the Moons surface with...Ch. 36 - In June 1985, a laser beam was sent out from the...Ch. 36 - A diffraction grating 1.00 cm wide has 10 000...Ch. 36 - SSM If you double the width of a single slit, the...Ch. 36 - When monochromatic light is incident on a slit...Ch. 36 - A spy satellite orbiting at 160 km above Earths...Ch. 36 - Suppose that two points are separated by 2.0 cm....Ch. 36 - A diffraction grating has 200 lines/mm. Light...Ch. 36 - A diffraction grating has 200 rulings/mm, and it...Ch. 36 - Prob. 101PCh. 36 - Monochromatic light wavelength = 450 nm is...Ch. 36 - Light containing a mixture of two wavelengths, 500...Ch. 36 - Prob. 104PCh. 36 - Show that a grating made up of alternately...Ch. 36 - Light of wavelength 500 nm diffracts through a...Ch. 36 - If, in a two-slit interference pattern, there are...Ch. 36 - White light consisting of wavelengths from 400 nm...Ch. 36 - If we make d = a in Fig. 36-50, the two slits...Ch. 36 - Derive Eq. 36-28, the expression for the...Ch. 36 - Prob. 111PCh. 36 - How many orders of the entire visible spectrum...Ch. 36 - An acoustic double-slit system of slit separation...Ch. 36 - Two emission lines have wavelengths and ,...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Modified True/False 3. __________ Aquatic microorganisms are more prevalent near the surface than at the bottom...
Microbiology with Diseases by Body System (5th Edition)
Why are the top predators in food chains most severely affected by pesticides such as DDT?
Campbell Essential Biology with Physiology (5th Edition)
The number of named species is about __________, but the actual number of species on Earth is estimated to be a...
Biology: Life on Earth (11th Edition)
In one public health study, replica plating was used to screen 131 fecal samples for gram-negative bacteria tha...
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
6.1 State the number of electrons that be must be lost by atoms of each of the following to achieve a stable el...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Some organizations are starting to envision a sustainable societyone in which each generation inherits sufficie...
Campbell Essential Biology (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider a single-slit diffraction pattern for =589 nm, projected on a screen that is 1.00 m from a slit of width 0.25 mm. How far from the center of the pattern are the centers of the first and second dark fringes?arrow_forwardThe structure of the NaCl crystal forms reflecting planes 0.541 nm apart. What is the smallest angle, measured from these planes, at which X-ray diffraction can be observed, if X-rays of wavelength 0.085 nm are used?arrow_forwardIn our study of diffraction by a single slit, we assume that the length of the slit is much larger than the width. What happens to the diffraction pattern if these two dimensions were comparable?arrow_forward
- In two-slit interference, if the slit separation is 14 mm and the slit widths are each 2.0 mm, (a) how many two-slit maxima are in the central peak of the diffraction envelope and (b) how many are in either of the first side peak of the diffraction envelope?arrow_forwardCoherent microwave light with a frequency f= 2.0*1010 Hz is incident on a d=5.0 cm double slit barrier, producing an interference pattern of a number of maxima and minima. A detector is free to swing around the full 180 degrees in order to find the presence of intereference maxima and minima. How many different minima will this detector detect, as it is allowed to swing around the full 180 degrees? Include minima on both sides of the centerkine in your count.arrow_forwardQ1/ A/ Consider a resonator consisting of two concave spherical mirrors both with radius of curvature 4 m and separated by a distance of 1 m. Calculate the minimum beam diameter of the TEMy mode at the resonator center and on the mirrors when the laser oscillation is Art laser wavelength 2=514.5 nm. Then, Find if this cavity is stable or not. B/ One of the mirrors in A is replaced by a concave mirror of 1.5m radius of curvature, calculate the position of minimum beam radius. Then calculate the beam waist and radius of curvature at 150 cm from M1.arrow_forward
- In a certain crystal the spacing between crystal planes is 0.165 nm. (a) If you shine a beam of x rays of wavelength 0.124 nm on this crystal, for what angle between the beam and the crystal planes does the first strong interference maximum occur? (b) For what larger angles (if any) do strong interference maxima occur?arrow_forwardQ/4 : In Biprism experiment the fringe width is 0.30 mm. If slits are covered by glass plate of thickness 0.04 mm and refractive index u = 1.5, then the fringe width is (a) 0.02 mm (b) 0.1 mm (c) 0.30 mm (d) 0.2 mmarrow_forwardCoherent electromagnetic waves with wavelength l = 500 nm pass through two identical slits. The width of each slit is a, and the distance between the centers of the slits is d = 9.00 mm. (a) What is the smallest possible width a of the slits if the m = 3 maximum in the interference pattern is not present? (b) What is the next larger value of the slit width for which the m = 3 maximum is absent?arrow_forward
- Problem 2: Consider light that has its third minimum at an angle of 23.6° when it falls on a single slit of width 3.55 μm. Randomized Variables 9 = 23.6° w = 3.55 um D Find the wavelength of the light in nanometers. λ=1 sin() cos() cotan() asin() atan() acotan() tanh() cosh() O Degrees Hints: 2% deduction per hint. Hints remaining: 2 Submit tan() JU acos() E sinh() cotanh() Radians Hint ( + 7 8 9 4 5 6 1 0 VO BACKSPACE Feedback 2 3 All content © 2022 Expert TA, LLC DEL HOME END I give up! Feedback: 2% deduction per feedback. CLEARarrow_forwardX rays of wavelength 0.0850 nm are scattered from the atoms of a crystal. The second-order maximum in the Bragg reflection occurs when the angle θ in Fig is 21.5°. What is the spacing between adjacent atomic planes in the crystal?arrow_forwardIn a large vacuum chamber, monochromatic laserlight passes through a narrow slit in a thin aluminum plate and formsa diffraction pattern on a screen that is 0.500m from the slit. When thealuminum plate has a temperature of 20.0C, the width of the centralmaximum in the diffraction pattern is 2.75 mm. What is the change inthe width of the central maximum when the temperature of the plate israised to 520.0C? Does the width of the central diffraction maximumincrease or decrease when the temperature is increased?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY