Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 36, Problem 33P
To determine
To calculate:
a) the diameter of central beam at a target 2000 km away from the beam source.
b) the ratio of beam intensity at the target to that at the end of the wire.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
American physicists Davisson and Germer did a diffraction experiment in the1920s to demonstrate the wave-like property of electrons. If d is 0.215 nm for a cubiclattice crystal (see Fig. 1), and the incident beam is perpendicular to the surface of thecrystal,(a) find the optical path length difference between ray 1 and ray 2 in terms of dand φ.(b) how much voltage has to be applied to a beam of electrons so the diffractionpeak would be observed at φ = 53.13°?
(a) Calculate the wavelength of light in vacuum that has a frequency of 8.5*10^9Hz.
(b) What is its wavelength in glycerine? (The index of refraction of glycerine is 1.473.)
(c) Calculate the energy of one photon of such light in vacuum. Express the answer in
electron volts
A sodium laser emits a light beam of wavelength 589 nm in air, with a beam diameter of 3 mmand emitted power of 50 mW. Evaluate:i) the wavenumber k0,ii) the angular frequency ω, andiii) the peak amplitude of the electric field E0 in the laser spot (you may assume beam divergencedue to diffraction is negligible).Give the appropriate SI units in each case.
Chapter 36 Solutions
Fundamentals of Physics Extended
Ch. 36 - You are conducting a single-slit diffraction...Ch. 36 - In a single-slit diffraction experiment, the top...Ch. 36 - For three experiments, Fig. 36-30 gives the...Ch. 36 - For three experiments, Fig. 36-31 gives versus...Ch. 36 - Figure 36-32 shows four choices for the...Ch. 36 - Prob. 6QCh. 36 - At night many people see rings called entoptic...Ch. 36 - a For a given diffraction grating, does the...Ch. 36 - Figure 36-33 shows a red line and a green line of...Ch. 36 - For the situation of Question 9 and Fig. 36-33, if...
Ch. 36 - a Figure 36-34a shows the lines produced by...Ch. 36 - Figure 36-35 shows the bright fringes that lie...Ch. 36 - In three arrangements you view two closely spaced...Ch. 36 - For a certain diffraction grating, the ratio /a of...Ch. 36 - GO The distance between the first and fifth minima...Ch. 36 - What must be the ratio of the slit width to the...Ch. 36 - A plane wave of wavelength 590 nm is incident on a...Ch. 36 - In conventional television, signals are broadcast...Ch. 36 - A single slit is illuminated by light of...Ch. 36 - Monochromatic light of wavelength 441 nm is...Ch. 36 - Light of wavelength 633 nm is incident on a narrow...Ch. 36 - Sound waves with frequency 3000 Hz and speed 343...Ch. 36 - SSM ILW A slit 1.00 mm wide is illuminated by...Ch. 36 - GO Manufacturers of wire and other objects of...Ch. 36 - A 0.10-mm-wide slit is illuminated by light of...Ch. 36 - Figure 36-38 gives versus the sine of the angle ...Ch. 36 - Monochromatic light with wavelength 538 nm is...Ch. 36 - In the single-slit diffraction experiment of Fig....Ch. 36 - SSM WWW The full width at half-maximum FWHM of a...Ch. 36 - Babinets principle. A monochromatic beam of...Ch. 36 - a Show that the values of a at which intensity...Ch. 36 - The wall of a large room is covered with acoustic...Ch. 36 - a How far from grains of red sand must you be to...Ch. 36 - The radar system of a navy cruiser transmits at a...Ch. 36 - SSM WWW Estimate the linear separation of two...Ch. 36 - Prob. 22PCh. 36 - SSM The two headlights of an approaching...Ch. 36 - Entoptic halos. If someone looks at a bright...Ch. 36 - ILW Find the separation of two points on the Moons...Ch. 36 - The telescopes on some commercial surveillance...Ch. 36 - If Superman really had x-ray vision at 0.10 nm...Ch. 36 - GO The wings of tiger beetles Fig. 36-41 are...Ch. 36 - a What is the angular separation of two stars if...Ch. 36 - GO Floaters. The floaters you see when viewing a...Ch. 36 - SSM Millimeter-wave radar generates a narrower...Ch. 36 - a A circular diaphragm 60 cm in diameter...Ch. 36 - Prob. 33PCh. 36 - Prob. 34PCh. 36 - Suppose that the central diffraction envelope of a...Ch. 36 - A beam of light of a single wavelength is incident...Ch. 36 - In a double-slit experiment, the slit separation d...Ch. 36 - In a certain two-slit interference pattern, 10...Ch. 36 - Light of wavelength 440 nm passes through a double...Ch. 36 - GO Figure 36-45 gives the parameter of Eq. 36-20...Ch. 36 - GO In the two-slit interference experiment of Fig....Ch. 36 - GO a In a double-slit experiment, what largest...Ch. 36 - SSM WWW a How many bright fringes appear between...Ch. 36 - Perhaps to confuse a predator, some tropical...Ch. 36 - A diffraction grating 20.0 mm wide has 6000...Ch. 36 - Visible light is incident perpendicularly on a...Ch. 36 - SSM ILW A grating has 400 lines/mm. How many...Ch. 36 - A diffraction grating is made up of slits of width...Ch. 36 - SSM WWW Light of wavelength 600 nm is incident...Ch. 36 - With light from a gaseous discharge tube incident...Ch. 36 - GO A diffraction grating having 180 lines/mm is...Ch. 36 - GO A beam of light consisting of wavelengths from...Ch. 36 - Prob. 53PCh. 36 - Derive this expression for the intensity pattern...Ch. 36 - SSM ILW A source containing a mixture of hydrogen...Ch. 36 - a How many rulings must a 4.00-cm-wide diffraction...Ch. 36 - Light at wavelength 589 nm from a sodium lamp is...Ch. 36 - A grating has 600 rulings/mm and is 5.0 mm wide. a...Ch. 36 - A diffraction grating with a width of 2.0 cm...Ch. 36 - Prob. 60PCh. 36 - With a particular grating the sodium doublet...Ch. 36 - A diffraction grating illuminated by monochromatic...Ch. 36 - Assume that the limits of the visible spectrum are...Ch. 36 - What is the smallest Bragg angle for x rays of...Ch. 36 - Prob. 65PCh. 36 - Prob. 66PCh. 36 - Prob. 67PCh. 36 - If first-order reflection occurs in a crystal at...Ch. 36 - X rays of wavelength 0.12 nm are found to undergo...Ch. 36 - Prob. 70PCh. 36 - Prob. 71PCh. 36 - Prob. 72PCh. 36 - Consider a two-dimensional square crystal...Ch. 36 - An astronaut in a space shuttle claims she can...Ch. 36 - SSM Visible light is incident perpendicularly on a...Ch. 36 - A beam of light consists of two wavelengths,...Ch. 36 - SSM In a single-slit diffraction experiment, there...Ch. 36 - GO A double-slit system with individual slit...Ch. 36 - SSM A diffraction grating has resolving power R =...Ch. 36 - The pupil of a persons eye has a diameter of 5.00...Ch. 36 - Prob. 81PCh. 36 - A grating with d = 1.50 m is illuminated at...Ch. 36 - SSM In two-slit interference, if the slit...Ch. 36 - GO In a two-slit interference pattern, what is the...Ch. 36 - A beam of light with a narrow wavelength range...Ch. 36 - If you look at something 40 m from you, what is...Ch. 36 - Two yellow flowers are separated by 60 cm along a...Ch. 36 - In a single-slit diffraction experiment, what must...Ch. 36 - A diffraction grating 3.00 cm wide produces the...Ch. 36 - A single-slit diffraction experiment is set up...Ch. 36 - A diffraction grating has 8900 slits across 1.20...Ch. 36 - In an experiment to monitor the Moons surface with...Ch. 36 - In June 1985, a laser beam was sent out from the...Ch. 36 - A diffraction grating 1.00 cm wide has 10 000...Ch. 36 - SSM If you double the width of a single slit, the...Ch. 36 - When monochromatic light is incident on a slit...Ch. 36 - A spy satellite orbiting at 160 km above Earths...Ch. 36 - Suppose that two points are separated by 2.0 cm....Ch. 36 - A diffraction grating has 200 lines/mm. Light...Ch. 36 - A diffraction grating has 200 rulings/mm, and it...Ch. 36 - Prob. 101PCh. 36 - Monochromatic light wavelength = 450 nm is...Ch. 36 - Light containing a mixture of two wavelengths, 500...Ch. 36 - Prob. 104PCh. 36 - Show that a grating made up of alternately...Ch. 36 - Light of wavelength 500 nm diffracts through a...Ch. 36 - If, in a two-slit interference pattern, there are...Ch. 36 - White light consisting of wavelengths from 400 nm...Ch. 36 - If we make d = a in Fig. 36-50, the two slits...Ch. 36 - Derive Eq. 36-28, the expression for the...Ch. 36 - Prob. 111PCh. 36 - How many orders of the entire visible spectrum...Ch. 36 - An acoustic double-slit system of slit separation...Ch. 36 - Two emission lines have wavelengths and ,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- When a powerful laser is employed in the Earth's atmosphere, the accompanying electric field may ionize the air, transforming it into a plasma that reflects the laser light. Electric breakdown occurs in dry air at 0°C and 1 atm when field amplitudes above around 3:00 Mv/m a). At this maximum intensity, how much Power can a cylindrical beam with a diameter of 4.03 mm deliver? Note Answer must be in W.arrow_forward(a) How many minutes does it take a photon to travel from the Sun to the Earth? min (b) What is the energy in ev of a photon with a wavelength of 478 nm? ev (c) What is the wavelength (in m) of a photon with an energy of 1.03 eV?arrow_forward(a) Calculate the wavelength of light in vacuum that has a frequency of 5.25 x 10¹7 Hz. nm (b) What is its wavelength in ice? nm (c) Calculate the energy of one photon of such light in vacuum. Express the answer in electron volts. eV (d) Does the energy of the photon change when it enters the ice? O The energy of the photon does not change. O The energy of the photon changes.arrow_forward
- Pulsed lasers have many applications, but are very complicated to construct. One problem is chromatic aberration, another is aligning the components. Commonly available laser systems can produce 1 fs (10-¹4 s) pulses. a) how far does light travel in 1 fs? b) If the energy per pulse is 100 mJ, what's the power per pulse (in Watts)? c) calculate the (minimum) spread of frequencies required to produce a 1 fs pulse. d) if the center wavelength is 1 um, what is the range of wavelengths contained in a single pulse? e) common varieties of optical glass have a dispersion An/A2 = 0.025/micron. 1) if the index of refraction is 1.51 for λ = 1 um, what is the value of 'n' for the upper and lower wavelength? 2) the focal length of a lens is inversely proportional to the index of refraction: 1/f~ (n-1). What is the ratio of the focal lengths for the two extreme wavelengths? 3) how much longitudinal chromatic aberration (the difference in focal length between two colors) is there for a 100 mm focal…arrow_forwardAn x-ray tube is operated at 50 000 V. (a) Find the minimum wavelength of the radiation emitted by this tube. (b) If the radiation is directed at a crystal, the first-order maximum in the reflected radiation occurs when the grazing angle is 2.5°. What is the spacing between reflecting planes in the crystal?arrow_forwardA certain device for analyzing electromagnetic radiation is based on the Bragg scattering of the radiation from a crystal. For radiation of wavelength 0.149 nm, the first-order Bragg peak appears centered at an angle of 15.15°. The aperture of the analyzer passes radiation in the angular range of 0.015°. What is the corresponding range of wavelengths passing through the analyzer?arrow_forward
- How much energy is carried by light with a wavelength of λ = 509 nm? Express your answer in eV (electron-volts).arrow_forwardHigh-power lasers are used to compress a plasma (a gas of charged particles) by radiation pressure. A laser generating radiation pulses with peak power 1.5 * 10^3 MW is focused onto 1.0 mm2 of high-electron-density plasma. Find the pressure exerted on the plasma if the plasma reflects all the light beams directly back along their paths.arrow_forwardEstimate the angular spread of a laser beam due todiffraction if the beam emerges through a 3.0-mm-diametermirror. Assume that λ = 694nm What would be the diameter of this beam if it struck (a) a satellite 340 km above the Earth, or (b) the Moon?arrow_forward
- (a) What are X-rays? Differentiate between characteristic (monochromatic) and continuous X-rays. What are Laue equations for diffraction of X-rays by a crystalline solid? Show that the Bragg's equation is a special case of the Laue equations.arrow_forwardA laser used for lunar range-finding shoots a laser pulse with E0�0 = 0.12 JJ of energy. The reflectors on the moon are 45cm×45cm45cm×45cm. If we assume that the laser beam energy is uniformly distributed – a rather poor assumption but adequate for making an estimate – how much laser-light energy hits the reflector?arrow_forwardAssume that you want to bounce a laser beam off the Moon. Assume the laser beam is TEM9,0 and that the Moon is a distance of 3.8 · 10$ meters from Earth. Calculate the following. (a) Assume that the initial beam waist of a CO, laser running on the 10.6 µm line is 15 cm. How large is the beam waist when the beam hits the Moon? What is the radius of curvature? (b) Assume that the initial beam waist of a CO, laser running on the 10.6 µm line is 1.5 meters. How large is the beam waist when the beam hits the Moon? What is the radius of curvature? (c) Repeat part (a) for an excimer laser operating at 254.0 nm; use the same beam waist. |(d) Repeat part (b) for an excimer laser operating at 254.0 nm; use the same beam waist. (e) From your answers to parts (a-d), speculate on what kind of laser and what type of associated optical system you would want to use in order to optimally bounce a laser beam off the Moon.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning