Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 36, Problem 84P
GO In a two-slit interference pattern, what is the ratio of slit separation to slit width if there are 17 bright fringes within the central diffraction envelope and the diffraction minima coincide with two-slit interference maxima?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In a certain two-slit interference pattern, 10 bright fringes lie within the second side peak of the diffraction envelope and diffraction minima coincide with two-slit interference maxima. What is the ratio of the slit separation to the slit width?
Two (and only two) full spectral orders can be seen oneither side of the central maximum when white light is sentthrough a diffraction grating. What is the maximumnumber of slits per cm for the grating?
In two-slit interference, if the slit separation is 14 mm and the slit widths are each 2.0 mm, (a) how many two-slit maxima are in the central peak of the diffraction envelope and (b) how many are in either of the first side peak of the diffraction envelope?
Chapter 36 Solutions
Fundamentals of Physics Extended
Ch. 36 - You are conducting a single-slit diffraction...Ch. 36 - In a single-slit diffraction experiment, the top...Ch. 36 - For three experiments, Fig. 36-30 gives the...Ch. 36 - For three experiments, Fig. 36-31 gives versus...Ch. 36 - Figure 36-32 shows four choices for the...Ch. 36 - Prob. 6QCh. 36 - At night many people see rings called entoptic...Ch. 36 - a For a given diffraction grating, does the...Ch. 36 - Figure 36-33 shows a red line and a green line of...Ch. 36 - For the situation of Question 9 and Fig. 36-33, if...
Ch. 36 - a Figure 36-34a shows the lines produced by...Ch. 36 - Figure 36-35 shows the bright fringes that lie...Ch. 36 - In three arrangements you view two closely spaced...Ch. 36 - For a certain diffraction grating, the ratio /a of...Ch. 36 - GO The distance between the first and fifth minima...Ch. 36 - What must be the ratio of the slit width to the...Ch. 36 - A plane wave of wavelength 590 nm is incident on a...Ch. 36 - In conventional television, signals are broadcast...Ch. 36 - A single slit is illuminated by light of...Ch. 36 - Monochromatic light of wavelength 441 nm is...Ch. 36 - Light of wavelength 633 nm is incident on a narrow...Ch. 36 - Sound waves with frequency 3000 Hz and speed 343...Ch. 36 - SSM ILW A slit 1.00 mm wide is illuminated by...Ch. 36 - GO Manufacturers of wire and other objects of...Ch. 36 - A 0.10-mm-wide slit is illuminated by light of...Ch. 36 - Figure 36-38 gives versus the sine of the angle ...Ch. 36 - Monochromatic light with wavelength 538 nm is...Ch. 36 - In the single-slit diffraction experiment of Fig....Ch. 36 - SSM WWW The full width at half-maximum FWHM of a...Ch. 36 - Babinets principle. A monochromatic beam of...Ch. 36 - a Show that the values of a at which intensity...Ch. 36 - The wall of a large room is covered with acoustic...Ch. 36 - a How far from grains of red sand must you be to...Ch. 36 - The radar system of a navy cruiser transmits at a...Ch. 36 - SSM WWW Estimate the linear separation of two...Ch. 36 - Prob. 22PCh. 36 - SSM The two headlights of an approaching...Ch. 36 - Entoptic halos. If someone looks at a bright...Ch. 36 - ILW Find the separation of two points on the Moons...Ch. 36 - The telescopes on some commercial surveillance...Ch. 36 - If Superman really had x-ray vision at 0.10 nm...Ch. 36 - GO The wings of tiger beetles Fig. 36-41 are...Ch. 36 - a What is the angular separation of two stars if...Ch. 36 - GO Floaters. The floaters you see when viewing a...Ch. 36 - SSM Millimeter-wave radar generates a narrower...Ch. 36 - a A circular diaphragm 60 cm in diameter...Ch. 36 - Prob. 33PCh. 36 - Prob. 34PCh. 36 - Suppose that the central diffraction envelope of a...Ch. 36 - A beam of light of a single wavelength is incident...Ch. 36 - In a double-slit experiment, the slit separation d...Ch. 36 - In a certain two-slit interference pattern, 10...Ch. 36 - Light of wavelength 440 nm passes through a double...Ch. 36 - GO Figure 36-45 gives the parameter of Eq. 36-20...Ch. 36 - GO In the two-slit interference experiment of Fig....Ch. 36 - GO a In a double-slit experiment, what largest...Ch. 36 - SSM WWW a How many bright fringes appear between...Ch. 36 - Perhaps to confuse a predator, some tropical...Ch. 36 - A diffraction grating 20.0 mm wide has 6000...Ch. 36 - Visible light is incident perpendicularly on a...Ch. 36 - SSM ILW A grating has 400 lines/mm. How many...Ch. 36 - A diffraction grating is made up of slits of width...Ch. 36 - SSM WWW Light of wavelength 600 nm is incident...Ch. 36 - With light from a gaseous discharge tube incident...Ch. 36 - GO A diffraction grating having 180 lines/mm is...Ch. 36 - GO A beam of light consisting of wavelengths from...Ch. 36 - Prob. 53PCh. 36 - Derive this expression for the intensity pattern...Ch. 36 - SSM ILW A source containing a mixture of hydrogen...Ch. 36 - a How many rulings must a 4.00-cm-wide diffraction...Ch. 36 - Light at wavelength 589 nm from a sodium lamp is...Ch. 36 - A grating has 600 rulings/mm and is 5.0 mm wide. a...Ch. 36 - A diffraction grating with a width of 2.0 cm...Ch. 36 - Prob. 60PCh. 36 - With a particular grating the sodium doublet...Ch. 36 - A diffraction grating illuminated by monochromatic...Ch. 36 - Assume that the limits of the visible spectrum are...Ch. 36 - What is the smallest Bragg angle for x rays of...Ch. 36 - Prob. 65PCh. 36 - Prob. 66PCh. 36 - Prob. 67PCh. 36 - If first-order reflection occurs in a crystal at...Ch. 36 - X rays of wavelength 0.12 nm are found to undergo...Ch. 36 - Prob. 70PCh. 36 - Prob. 71PCh. 36 - Prob. 72PCh. 36 - Consider a two-dimensional square crystal...Ch. 36 - An astronaut in a space shuttle claims she can...Ch. 36 - SSM Visible light is incident perpendicularly on a...Ch. 36 - A beam of light consists of two wavelengths,...Ch. 36 - SSM In a single-slit diffraction experiment, there...Ch. 36 - GO A double-slit system with individual slit...Ch. 36 - SSM A diffraction grating has resolving power R =...Ch. 36 - The pupil of a persons eye has a diameter of 5.00...Ch. 36 - Prob. 81PCh. 36 - A grating with d = 1.50 m is illuminated at...Ch. 36 - SSM In two-slit interference, if the slit...Ch. 36 - GO In a two-slit interference pattern, what is the...Ch. 36 - A beam of light with a narrow wavelength range...Ch. 36 - If you look at something 40 m from you, what is...Ch. 36 - Two yellow flowers are separated by 60 cm along a...Ch. 36 - In a single-slit diffraction experiment, what must...Ch. 36 - A diffraction grating 3.00 cm wide produces the...Ch. 36 - A single-slit diffraction experiment is set up...Ch. 36 - A diffraction grating has 8900 slits across 1.20...Ch. 36 - In an experiment to monitor the Moons surface with...Ch. 36 - In June 1985, a laser beam was sent out from the...Ch. 36 - A diffraction grating 1.00 cm wide has 10 000...Ch. 36 - SSM If you double the width of a single slit, the...Ch. 36 - When monochromatic light is incident on a slit...Ch. 36 - A spy satellite orbiting at 160 km above Earths...Ch. 36 - Suppose that two points are separated by 2.0 cm....Ch. 36 - A diffraction grating has 200 lines/mm. Light...Ch. 36 - A diffraction grating has 200 rulings/mm, and it...Ch. 36 - Prob. 101PCh. 36 - Monochromatic light wavelength = 450 nm is...Ch. 36 - Light containing a mixture of two wavelengths, 500...Ch. 36 - Prob. 104PCh. 36 - Show that a grating made up of alternately...Ch. 36 - Light of wavelength 500 nm diffracts through a...Ch. 36 - If, in a two-slit interference pattern, there are...Ch. 36 - White light consisting of wavelengths from 400 nm...Ch. 36 - If we make d = a in Fig. 36-50, the two slits...Ch. 36 - Derive Eq. 36-28, the expression for the...Ch. 36 - Prob. 111PCh. 36 - How many orders of the entire visible spectrum...Ch. 36 - An acoustic double-slit system of slit separation...Ch. 36 - Two emission lines have wavelengths and ,...
Additional Science Textbook Solutions
Find more solutions based on key concepts
How can 1H NMR distinguish between the compounds in each of the following pairs?
Organic Chemistry (8th Edition)
All of the following processes are involved in the carbon cycle except: a. photosynthesis b. cell respiration c...
Human Biology: Concepts and Current Issues (8th Edition)
2.81 In which of the fo1losing pairs do both numbers contain the same number of significant figures? (2.2)
a....
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Two culture media were inoculated with four different bacteria. After incubation, the following results were ob...
Microbiology: An Introduction
16. What are the major events of intramembranous ossification and endochondral ossification, and how are they d...
Principles of Anatomy and Physiology
Complete and balance each acid-base reaction. a. HC2H3O2(aq)+Ca(OH)2(aq) b. HBr(aq)+LiOH(aq) c. H2SO4(aq)+Ba(OH...
Introductory Chemistry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- When a monochromatic light of wavelength 430 nm incident on a double slit of slit separation 5 m, there are 11 interference fringes in its central maximum. How many interference fringes will be in the central maximum of a light of wavelength 632.8 nm for the same double slit?arrow_forwardWhat are the angular positions of the first and second minima in a diffraction pattern produced by a slit of width 0.20 mm that is illuminated by 400 nm light? What is the angular width of the central peak?arrow_forwardDetermine the intensities of two interference peaks other than the central peak in the central maximum of the diffraction, if possible, when a light of wavelength 628 nm is incident on a double slit of width 500 nm and separation 1500 nm. Use the intensity of the central spot to be 1mW/cm2 .arrow_forward
- For 600-nm wavelength light and a slit separation of 0.12 mm, what are the angular positions of the first and third maxima in the double slit interference pattern?arrow_forwardConsider the single-slit diffraction pattern for =600 nm, D=0.025 mm , and x=2.0 m. Find the intensity in terms of Io at =0.5 , 1.0°, 1.5°, 3.0°, and 10.0°.arrow_forwardIf the separation between the first and the second minima of a single-slit diffraction pattern is 6.0 mm, what is the distance between the screen and the slit? The light wavelength is 500 nm and the slit width is 0.16 mm.arrow_forward
- The central diffraction peak of the double-slit interference pattern contains exactly nine fringes. What is the ratio of the slit separation to the slit width?arrow_forwardTwo slits of width 2 m, each in an opaque material, are separated by a center-to-center distance of 6 m. A monochromatic light of wavelength 450 nm is incident on the double-slit. One finds a combined interference and diffraction pattern on the screen. (a) How many peaks of the interference will be observed in the central maximum of the diffraction pattern? (b) How many peaks of the interference will be observed if the slit width is doubled while keeping the distance between the slits same? (c) How many peaks of interference will be observed if the slits are separated by twice the distance, that is, 12 m, while keeping the widths of the slits same? (d) What will happen in (a) if instead of 450-nm light another light of wavelength 680 nm is used? (e) What is the value of the ratio of the intensity of the central peak to the intensity of the next bright peak in (a)? (f) Does this ratio depend on the wavelength of the light? (g) Does this ratio depend on the width or separation of the slits?arrow_forwardA rectangular slit is twice as wide as it is high. Is the central diffraction peak wider in the vertical direction or in the horizontal direction?arrow_forward
- Determine the intensities of three interference peaks other than the central peak in the central maximum of the diffraction, if possible, when a light of wavelength 500 nm is incident normally on a double slit of width 1000 nm and separation 1500 nm. Use the intensity of the central spot to be 1mW/cm2 .arrow_forwardA monochromatic light of wavelength 589 nm incident on a double slit with slit width 2.5 m and unknown separation results in a diffraction pattern containing nine interference peaks inside the central maximum. Find the separation of the slits.arrow_forward(a) Sodium vapor light averaging 589 nm in wavelength falls on a single slit of width 7.50 m. At what angle does it produces its second minimum? (b) What is the highest-order minimum produced?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY