University Physics Volume 3
17th Edition
ISBN: 9781938168185
Author: William Moebs, Jeff Sanny
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 23P
Consider a single-slit diffraction pattern for
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In a single-slit diffraction experiment, there is a minimum of intensity for orange light (l= 600 nm) and a minimum of intensity for blue-green light (l = 500 nm) at the same angle of 1.00 mrad. For what minimum slit width is this possible?
In a double-slit diffraction experiment, two slits of width 12.4 x 10-6 m are separated by a distance of 32.2 x 10-6 m, and the
wavelength of the incident light is 671 nm. The diffraction pattern is viewed on a screen 4.63 m from the slits. Assume Ip is
the intensity at a point P, a distance y= 69.8 cm on the screen from the central maximum. Find the ratio of the intensity at P
and the intensity at the center of the diffraction pattern (I), Ip/Io.
i
Hint
The ratio of the intensities is given by
= (sin(a)) ²
Ip
Io
Save for Later
cos (B)².
Submit Answer
Assume light of wavelength 650 nm passes through two slits 3.00 μm wide, with their centers 9.00 μm apart. Make a sketch of the combined diffraction and interference pattern in the form of a graph of intensity versus θ = (πa sin θ)/λ. You may as shown as a starting point.
Chapter 4 Solutions
University Physics Volume 3
Ch. 4 - Check Your Understanding Suppose the slit width in...Ch. 4 - Check Your Understanding For the experiment in...Ch. 4 - Check Your Understanding For the experiment in...Ch. 4 - Check Your Understanding If the line spacing of a...Ch. 4 - Check Your Understanding What is the angular...Ch. 4 - Check Your Understanding For the experiment...Ch. 4 - As the width of the slit producing a single-slit...Ch. 4 - Compare interference and diffraction.Ch. 4 - If you and a friend are on opposite sides of a...Ch. 4 - What happens to the diffraction pattern of a...
Ch. 4 - In our study of diffraction by a single slit, we...Ch. 4 - A rectangular slit is twice as wide as it is high....Ch. 4 - In Equation 4.4, the parameter looks like an...Ch. 4 - Shown below is the central part of the...Ch. 4 - Is higher resolution obtained in a microscope with...Ch. 4 - The resolving power of refracting telescope...Ch. 4 - The distance between atoms in a molecule is about...Ch. 4 - A beam of light always spreads out. Why can a beam...Ch. 4 - Crystal lattices can be examined with X-rays but...Ch. 4 - How can you tell that a hologram is a true...Ch. 4 - If a hologram is recorded using monochromatic...Ch. 4 - What image will one see if a hologram is recorded...Ch. 4 - (a) At what angle is the first minimum for 550-nm...Ch. 4 - (a) Calculate the angle at which a 2.00-m-wide...Ch. 4 - (a) How wide is a single slit that produces its...Ch. 4 - (a) What is the width of a single slit that...Ch. 4 - Find the wavelength of light that has its third...Ch. 4 - (a) Sodium vapor light averaging 589 nm in...Ch. 4 - Consider a single-slit diffraction pattern for...Ch. 4 - (a) Find the angle between the first minima for...Ch. 4 - What is the minimum width of a single slit (in...Ch. 4 - (a) If a single slit produces a first minimum at...Ch. 4 - If the separation between the first and the second...Ch. 4 - A water break at the entrance to a harbor consists...Ch. 4 - An aircraft maintenance technician walks past a...Ch. 4 - A single slit of width 3.0 m is illuminated by a...Ch. 4 - A single slit of width 0.1 mm is illuminated by a...Ch. 4 - The width of the central peak in a single-slit...Ch. 4 - Consider the single-slit diffraction pattern for...Ch. 4 - Two slits of width 2 m, each in an opaque...Ch. 4 - A double slit produces a diffraction pattern that...Ch. 4 - For a double-slit configuration where the slit...Ch. 4 - Light of wavelength 500 nm falls normally on 50...Ch. 4 - A monochromatic light of wavelength 589 nm...Ch. 4 - When a monochromatic light of wavelength 430 nm...Ch. 4 - Determine the intensities of two interference...Ch. 4 - A diffraction grating has 2000 lines per...Ch. 4 - Find the angle for the third-order maximum for...Ch. 4 - How many lines per centimeter are there on a...Ch. 4 - What is the distance between lines on a...Ch. 4 - Calculate the wavelength of light that has its...Ch. 4 - An electric current through hydrogen gas produces...Ch. 4 - (a) What do the four angles in the preceding...Ch. 4 - What is the spacing between structures in a...Ch. 4 - An opal such as that shown in Figure 4.15 acts...Ch. 4 - At what angle does a diffraction grating produce a...Ch. 4 - (a) Find the maximum number of lines per...Ch. 4 - (a) Show that a 30,000 line per centimeter grating...Ch. 4 - The analysis shown below also applies to...Ch. 4 - The 305-m-diameter Arecibo radio telescope...Ch. 4 - Assuming the angular resolution found for the...Ch. 4 - Diffraction spreading for a flashlight is...Ch. 4 - (a) What is the minimum angular spread of a 633-nm...Ch. 4 - A telescope can be used to enlarge the diameter of...Ch. 4 - The limit to the eye’s acuity is actually related...Ch. 4 - What is the minimum diameter mirror on a telescope...Ch. 4 - Find the radius of a star’s image on the retina of...Ch. 4 - (a) The dwarf planet Pluto and its moon, Charon,...Ch. 4 - A spy satellite orbits Earth at a height of 180...Ch. 4 - What is the minimum angular separation of two...Ch. 4 - The headlights of a car are 1.3 m apart. What is...Ch. 4 - When dots are placed on a page from a laser...Ch. 4 - Suppose you are looking down at a highway from a...Ch. 4 - Can an astronaut orbiting Earth in a satellite at...Ch. 4 - The characters of a stadium scoreboard are formed...Ch. 4 - If a microscope can accept light from objects at...Ch. 4 - A camera uses a lens with aperture 2.0 cm. What is...Ch. 4 - X-rays of wavelength 0.103 nm reflects off a...Ch. 4 - A first-order Bragg reflection maximum is observed...Ch. 4 - An X-ray scattering experiment is performed on a...Ch. 4 - The structure of the NaCl crystal forms reflecting...Ch. 4 - On a certain crystal, a first-order X-ray...Ch. 4 - Calcite crystals contain scattering planes...Ch. 4 - The first-order Bragg angle for a certain crystal...Ch. 4 - White light falls on two narrow slits separated by...Ch. 4 - Microwaves of wavelength 10.0 mm fall normally on...Ch. 4 - Quasars, or quasi-stellar radio sources, are...Ch. 4 - Two slits each of width 1800 nm and separated by...Ch. 4 - A microwave of an unknown wavelength is incident...Ch. 4 - Red light (wavelength 632.8 nm in air) from a...Ch. 4 - A light ray of wavelength 461.9 nm emerges from a...Ch. 4 - How far apart must two objects be on the moon to...Ch. 4 - How far apart must two objects be on the moon to...Ch. 4 - A spy satellite is reputed to be able to resolve...Ch. 4 - Monochromatic light of wavelength 530 nm passes...Ch. 4 - A monochromatic light of unknown wavelength is...Ch. 4 - A source of light having two wavelengths 550 nm...Ch. 4 - A single slit of width 2100 nm is illuminated...Ch. 4 - A single slit of width 3.0 m is illuminated by a...Ch. 4 - A single slit of width 0.10 mm is illuminated by a...Ch. 4 - A diffraction grating produces a second maximum...Ch. 4 - A grating with 4000 lines per centimeter is used...Ch. 4 - A diffraction grating with 2000 lines per...Ch. 4 - For white light (400nm700nm) falling normally on a...Ch. 4 - How many complete orders of the visible spectrum...Ch. 4 - Two lamps producing light of wavelength 589 nm are...Ch. 4 - On a bright clear day, you are at the top of a...Ch. 4 - Radio telescopes are telescopes used for the...Ch. 4 - Calculate the wavelength of light that produces...Ch. 4 - (a) Find the angle of the third diffraction...Ch. 4 - As an example of diffraction by apertures of...Ch. 4 - What are the angular positions of the first and...Ch. 4 - How far would you place a screen from the slit of...Ch. 4 - How narrow is a slit that produces a diffraction...Ch. 4 - Suppose that the central peak of a single-slit...Ch. 4 - The central diffraction peak of the double-slit...Ch. 4 - Determine the intensities of three interference...Ch. 4 - The yellow light from a sodium vapor lamp seems to...Ch. 4 - Structures on a bird feather act like a reflection...Ch. 4 - If a diffraction grating produces a first-order...Ch. 4 - (a) What visible wavelength has its fourth-order...Ch. 4 - Consider a spectrometer based on a diffraction...Ch. 4 - An amateur astronomer wants to build a telescope...Ch. 4 - Blue light of wavelength 450 nm falls on a slit of...Ch. 4 - (a) Assume that the maxima are halfway between the...Ch. 4 - (a) By differentiating Equation 4.4, show that the...Ch. 4 - What is the maximum number of lines per centimeter...Ch. 4 - Show that a diffraction grating cannot produce a...Ch. 4 - A He-Ne laser beam is reflected from the surface...Ch. 4 - Objects viewed through a microscope are placed...
Additional Science Textbook Solutions
Find more solutions based on key concepts
S
10. FIGURE EX6.10 shows the velocity graph of a 2.0 kg object as it moves along the x-axis. What is the net ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
5. When the phenotype of heterozygotes is intermediate between the phenotypes of the two homozygotes, this patt...
Biology: Life on Earth (11th Edition)
If someone at the other end of a room smokes a cigarette, you may breathe in some smoke. The movement of smoke ...
Campbell Essential Biology with Physiology (5th Edition)
8. Studies of DNA support which of the following?
a. Members of the group called australopiths were the first t...
Campbell Biology: Concepts & Connections (9th Edition)
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
Endospore formation is called (a) _____. It is initiated by (b) _____. Formation of a new cell from an endospor...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A Fraunhofer diffraction pattern is produced on a screen located 1.00 m from a single slit. If a light source of wavelength 5.00 107 m is used and the distance from the center of the central bright fringe to the first dark fringe is 5.00 103 m, what is the slit width? (a) 0.010 0 mm (b) 0.100 mm (c) 0.200 mm (d) 1.00 mm (e) 0.005 00 mmarrow_forwardA monochromatic beam of light of wavelength 500 nm illuminates a double slit having a slit separation of 2.00 105 m. What is the angle of the second-order bright fringe? (a) 0.050 0 rad (b) 0.025 0 rad (c) 0.100 rad (d) 0.250 rad (e) 0.010 0 radarrow_forwardFor 600-nm wavelength light and a slit separation of 0.12 mm, what are the angular positions of the first and third maxima in the double slit interference pattern?arrow_forward
- When a monochromatic light of wavelength 430 nm incident on a double slit of slit separation 5 m, there are 11 interference fringes in its central maximum. How many interference fringes will be in the central maximum of a light of wavelength 632.8 nm for the same double slit?arrow_forwardA beam of monochromatic green light is diffracted by a slit of width 0.550 mm. The diffraction pattern forms on a wall 2.06 m beyond the slit. The distance between the positions of zero intensity on both sides of the central bright fringe is 4.10 mm. Calculate the wavelength of the light.arrow_forwardBoth sides of a uniform film that has index of refraction n and thickness d are in contact with air. For normal incidence of light, an intensity minimum is observed in the reflected light at λ2 and an intensity maximum is observed at λ1, where λ1 > λ2. (a) Assuming no intensity minima are observed between λ1 and λ2, find an expression for the integer m in Equations 27.13 and 27.14 in terms of the wavelengths λ1 and λ2. (b) Assuming n = 1.40, λ1 = 500 nm, and λ2 = 370 nm, determine the best estimate for the thickness of the film.arrow_forward
- In Figure P27.7 (not to scale), let L = 1.20 m and d = 0.120 mm and assume the slit system is illuminated with monochromatic 500-nm light. Calculate the phase difference between the two wave fronts arriving at P when (a) = 0.500 and (b) y = 5.00 mm. (c) What is the value of for which the phase difference is 0.333 rad? (d) What is the value of for which the path difference is /4?arrow_forwardEight slits equally separated by 0.149 mm is uniformly illuminated by a monochromatic light at =523 nm. What is the intensity of a secondary maxima compared to that of the principal maxima?arrow_forwardTable P35.80 presents data gathered by students performing a double-slit experiment. The distance between the slits is 0.0700 mm, and the distance to the screen is 2.50 m. The intensity of the central maximum is 6.50 106 W/m2. What is the intensity at y = 0.500 cm? TABLE P35.80arrow_forward
- Red light (wavelength 632.8 nm in air) from a Helium-Neon laser is incident on a single slit of width 0.05 mm. The entire apparatus is immersed in water of refractive index 1.333. Determine the angular width of the central peak.arrow_forwardA single slit of width 2100 nm is illuminated normally by a wave of wavelength 632.8 nm. Find the phase difference between waves from the top and one third from the bottom of the slit to a point on a screen at a horizontal distance of 2.0 m and vertical distance of 10.0 cm from the center.arrow_forwardIn Figure P36.10 (not to scale), let L = 1.20 m and d = 0.120 mm and assume the slit system is illuminated with monochromatic 500-nm light. Calculate the phase difference between the two wave fronts arriving at P when (a) = 0.500 and (b) y = 5.00 mm. (c) What is the value of for which the phase difference is 0.333 rad? (d) What is the value of for which the path difference is /4? Figure P36.10arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY