University Physics Volume 3
17th Edition
ISBN: 9781938168185
Author: William Moebs, Jeff Sanny
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 100AP
Two lamps producing light of wavelength 589 nm are fixed 1.0 m apart on a wooden plank. What is the maximum distance an observer can be and still resolve the lamps as two separate sources of light, if the resolution is affected solely by the diffraction of light entering the eye? Assume light enters the eye through a pupil of diameter 4.5 mm.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The limit to the eye’s visual acuity is related to diffraction by the pupil.Randomized VariablesD = 3.05 mmdh = 1.4 m
Part (a) What is the angle between two just-resolvable points of light for a 3.05 mm diameter pupil in radians, assuming an average wavelength of 550 nm?
Part (b) Take your result to be the practical limit for the eye. What is the greatest possible distance in km a car can be from you if you can resolve its two headlights, given they are 1.4 m apart? Part (c) What is the distance between two just-resolvable points held at an arm’s length (0.800 m) from your eye in mm?
Problem 5: Consider light that has its third minimum at an angle of 24.4° when it falls on a single slit of width 3.55 µm .
Randomized Variables
e = 24.4 °
w = 3.55 µm
Find the wavelength of the light in nanometers.
2 =
789
E AAL 4 |5 | 6
1| 2
sin()
cos()
tan()
HOME
cotan()
asin()
acos()
atan()
acotan()
sinh()
3
cosh()
tanh()
cotanh()
END
O Degrees O Radians
vol BACKSPACE
DEL
CLEAR
Submit
I give up!
Hint
Feedback
The maximum resolution of the eye depends on the diameter of the opening of the pupil (a diffraction effect) and the size of the retinal cells. The size of the retinal cells (about 5.0 mm in diameter) limits the size of an object at the near point (25 cm) of the eye to a height of about 50 µm. (To get a reasonable estimate without having to go through complicated calculations, we shall ignore the effect of the fluid in the eye.) (a) Given that the diameter of the human pupil is about 2.0 mm, does the Rayleigh criterion allow us to resolve a 50 -µm -tall object at 25 cm from the eye with light of wavelength 550 nm? (b) According to the Rayleigh criterion, what is the shortest object we could resolve at the 25 cm near point with light of wavelength 550 nm? (c) What angle would the object in part (b) subtend at the eye? Express your answer in minutes 160 min = 1°2, and compare it with the experimental value of about 1 min. (d) Which effect is more important in limiting the resolution of…
Chapter 4 Solutions
University Physics Volume 3
Ch. 4 - Check Your Understanding Suppose the slit width in...Ch. 4 - Check Your Understanding For the experiment in...Ch. 4 - Check Your Understanding For the experiment in...Ch. 4 - Check Your Understanding If the line spacing of a...Ch. 4 - Check Your Understanding What is the angular...Ch. 4 - Check Your Understanding For the experiment...Ch. 4 - As the width of the slit producing a single-slit...Ch. 4 - Compare interference and diffraction.Ch. 4 - If you and a friend are on opposite sides of a...Ch. 4 - What happens to the diffraction pattern of a...
Ch. 4 - In our study of diffraction by a single slit, we...Ch. 4 - A rectangular slit is twice as wide as it is high....Ch. 4 - In Equation 4.4, the parameter looks like an...Ch. 4 - Shown below is the central part of the...Ch. 4 - Is higher resolution obtained in a microscope with...Ch. 4 - The resolving power of refracting telescope...Ch. 4 - The distance between atoms in a molecule is about...Ch. 4 - A beam of light always spreads out. Why can a beam...Ch. 4 - Crystal lattices can be examined with X-rays but...Ch. 4 - How can you tell that a hologram is a true...Ch. 4 - If a hologram is recorded using monochromatic...Ch. 4 - What image will one see if a hologram is recorded...Ch. 4 - (a) At what angle is the first minimum for 550-nm...Ch. 4 - (a) Calculate the angle at which a 2.00-m-wide...Ch. 4 - (a) How wide is a single slit that produces its...Ch. 4 - (a) What is the width of a single slit that...Ch. 4 - Find the wavelength of light that has its third...Ch. 4 - (a) Sodium vapor light averaging 589 nm in...Ch. 4 - Consider a single-slit diffraction pattern for...Ch. 4 - (a) Find the angle between the first minima for...Ch. 4 - What is the minimum width of a single slit (in...Ch. 4 - (a) If a single slit produces a first minimum at...Ch. 4 - If the separation between the first and the second...Ch. 4 - A water break at the entrance to a harbor consists...Ch. 4 - An aircraft maintenance technician walks past a...Ch. 4 - A single slit of width 3.0 m is illuminated by a...Ch. 4 - A single slit of width 0.1 mm is illuminated by a...Ch. 4 - The width of the central peak in a single-slit...Ch. 4 - Consider the single-slit diffraction pattern for...Ch. 4 - Two slits of width 2 m, each in an opaque...Ch. 4 - A double slit produces a diffraction pattern that...Ch. 4 - For a double-slit configuration where the slit...Ch. 4 - Light of wavelength 500 nm falls normally on 50...Ch. 4 - A monochromatic light of wavelength 589 nm...Ch. 4 - When a monochromatic light of wavelength 430 nm...Ch. 4 - Determine the intensities of two interference...Ch. 4 - A diffraction grating has 2000 lines per...Ch. 4 - Find the angle for the third-order maximum for...Ch. 4 - How many lines per centimeter are there on a...Ch. 4 - What is the distance between lines on a...Ch. 4 - Calculate the wavelength of light that has its...Ch. 4 - An electric current through hydrogen gas produces...Ch. 4 - (a) What do the four angles in the preceding...Ch. 4 - What is the spacing between structures in a...Ch. 4 - An opal such as that shown in Figure 4.15 acts...Ch. 4 - At what angle does a diffraction grating produce a...Ch. 4 - (a) Find the maximum number of lines per...Ch. 4 - (a) Show that a 30,000 line per centimeter grating...Ch. 4 - The analysis shown below also applies to...Ch. 4 - The 305-m-diameter Arecibo radio telescope...Ch. 4 - Assuming the angular resolution found for the...Ch. 4 - Diffraction spreading for a flashlight is...Ch. 4 - (a) What is the minimum angular spread of a 633-nm...Ch. 4 - A telescope can be used to enlarge the diameter of...Ch. 4 - The limit to the eye’s acuity is actually related...Ch. 4 - What is the minimum diameter mirror on a telescope...Ch. 4 - Find the radius of a star’s image on the retina of...Ch. 4 - (a) The dwarf planet Pluto and its moon, Charon,...Ch. 4 - A spy satellite orbits Earth at a height of 180...Ch. 4 - What is the minimum angular separation of two...Ch. 4 - The headlights of a car are 1.3 m apart. What is...Ch. 4 - When dots are placed on a page from a laser...Ch. 4 - Suppose you are looking down at a highway from a...Ch. 4 - Can an astronaut orbiting Earth in a satellite at...Ch. 4 - The characters of a stadium scoreboard are formed...Ch. 4 - If a microscope can accept light from objects at...Ch. 4 - A camera uses a lens with aperture 2.0 cm. What is...Ch. 4 - X-rays of wavelength 0.103 nm reflects off a...Ch. 4 - A first-order Bragg reflection maximum is observed...Ch. 4 - An X-ray scattering experiment is performed on a...Ch. 4 - The structure of the NaCl crystal forms reflecting...Ch. 4 - On a certain crystal, a first-order X-ray...Ch. 4 - Calcite crystals contain scattering planes...Ch. 4 - The first-order Bragg angle for a certain crystal...Ch. 4 - White light falls on two narrow slits separated by...Ch. 4 - Microwaves of wavelength 10.0 mm fall normally on...Ch. 4 - Quasars, or quasi-stellar radio sources, are...Ch. 4 - Two slits each of width 1800 nm and separated by...Ch. 4 - A microwave of an unknown wavelength is incident...Ch. 4 - Red light (wavelength 632.8 nm in air) from a...Ch. 4 - A light ray of wavelength 461.9 nm emerges from a...Ch. 4 - How far apart must two objects be on the moon to...Ch. 4 - How far apart must two objects be on the moon to...Ch. 4 - A spy satellite is reputed to be able to resolve...Ch. 4 - Monochromatic light of wavelength 530 nm passes...Ch. 4 - A monochromatic light of unknown wavelength is...Ch. 4 - A source of light having two wavelengths 550 nm...Ch. 4 - A single slit of width 2100 nm is illuminated...Ch. 4 - A single slit of width 3.0 m is illuminated by a...Ch. 4 - A single slit of width 0.10 mm is illuminated by a...Ch. 4 - A diffraction grating produces a second maximum...Ch. 4 - A grating with 4000 lines per centimeter is used...Ch. 4 - A diffraction grating with 2000 lines per...Ch. 4 - For white light (400nm700nm) falling normally on a...Ch. 4 - How many complete orders of the visible spectrum...Ch. 4 - Two lamps producing light of wavelength 589 nm are...Ch. 4 - On a bright clear day, you are at the top of a...Ch. 4 - Radio telescopes are telescopes used for the...Ch. 4 - Calculate the wavelength of light that produces...Ch. 4 - (a) Find the angle of the third diffraction...Ch. 4 - As an example of diffraction by apertures of...Ch. 4 - What are the angular positions of the first and...Ch. 4 - How far would you place a screen from the slit of...Ch. 4 - How narrow is a slit that produces a diffraction...Ch. 4 - Suppose that the central peak of a single-slit...Ch. 4 - The central diffraction peak of the double-slit...Ch. 4 - Determine the intensities of three interference...Ch. 4 - The yellow light from a sodium vapor lamp seems to...Ch. 4 - Structures on a bird feather act like a reflection...Ch. 4 - If a diffraction grating produces a first-order...Ch. 4 - (a) What visible wavelength has its fourth-order...Ch. 4 - Consider a spectrometer based on a diffraction...Ch. 4 - An amateur astronomer wants to build a telescope...Ch. 4 - Blue light of wavelength 450 nm falls on a slit of...Ch. 4 - (a) Assume that the maxima are halfway between the...Ch. 4 - (a) By differentiating Equation 4.4, show that the...Ch. 4 - What is the maximum number of lines per centimeter...Ch. 4 - Show that a diffraction grating cannot produce a...Ch. 4 - A He-Ne laser beam is reflected from the surface...Ch. 4 - Objects viewed through a microscope are placed...
Additional Science Textbook Solutions
Find more solutions based on key concepts
(a) When opening a door, you push on it perpendicularly with a force of 55.0 N at a distance of 0.850m from the...
College Physics
Consider the two experiments described above. When the momentum of an object or system of objects did not chang...
Tutorials in Introductory Physics
3. (I) How much tension must a rope withstand if it is used to accelerate a 1210-kg car horizontally along a fr...
Physics: Principles with Applications
At hokey puck of mass 0.17 kg is shot across a rough floor with the roughness different at different places, wh...
University Physics Volume 1
1. An object is subject to two forces that do not point in opposite directions. Is it possible to choose their ...
College Physics: A Strategic Approach (3rd Edition)
The electromagnetic spectrum of light is often arranged in terms of frequency. Which one of the following has t...
Lecture- Tutorials for Introductory Astronomy
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- On a certain crystal, a first-order X-ray diffraction maximum is observed at an angle of 27.1° relative to its surface, using an X-ray source of unknown wavelength. Additionally, when illuminated with a different, this time of known wavelength 0.137 nm, a second-order maximum is detected at 37.3°. Determine (a) the spacing between the reflecting planes, and (b) the unknown wavelength.arrow_forwardThe movable mirror of a Michelson interferometer is attached to one end of a thin metal rod of length 23.3 mm. The other end of the rod is anchored so it does not move. As the temperature of the rod changes from 15°C to 25 C , a change of 14 fringes is observed. The light source is a He Ne laser, =632.8 nm . What is the change in length of the metal bar, and what is its thermal expansion coefficient?arrow_forwardThe structure of the NaCl crystal forms reflecting planes 0.541 nm apart. What is the smallest angle, measured from these planes, at which X-ray diffraction can be observed, if X-rays of wavelength 0.085 nm are used?arrow_forward
- As a single crystal is rotated in an x-ray spectrometer (Fig. 3.22a), many parallel planes of atoms besides AA and BB produce strong diffracted beams. Two such planes are shown in Figure P3.38. (a) Determine geometrically the interplanar spacings d1 and d2 in terms of d0. (b) Find the angles (with respect to the surface plane AA) of the n = 1, 2, and 3 intensity maxima from planes with spacing d1. Let = 0.626 and d0 = 4.00 . Note that a given crystal structure (for example, cubic) has interplanar spacings with characteristic ratios, which produce characteristic diffraction patterns. In this way, measurement of the angular position of diffracted x-rays may be used to infer the crystal structure. Figure P3.38 Atomic planes in a cubic lattice.arrow_forwardA 5.08-cm-long rectangular glass chamber is inserted into one arm of a Michelson interferometer using a 633-nm light source. This chamber is initially filled with air (n=1.000293) at standard atmospheric pressure but the air is gradually pumped out using a vacuum pump until a near perfect vacuum is achieved. How many fringes are observed moving by during the transition?arrow_forwardIn a thermally stabilized lab, a Michelson interferometer is used to monitor the temperature to ensure it stays constant. The movable mirror is mounted on the end of a 1.00-m-long aluminum rod, held fixed at the other end. The light source is a He Ne laser, =632.8 nm . The resolution of this apparatus corresponds to the temperature difference when a change of just one fringe is observed. What is this temperature difference?arrow_forward
- A beam of 580-nm light passes through two closely spaced glass plates at close to normal incidence as shown in Figure P27.23. For what minimum nonzero value of the plate separation d is the transmitted light bright?arrow_forwardA telescope can be used to enlarge the diameter of a laser beam and limit diffraction spreading. The laser beam is sent through the telescope in opposite the normal direction and can then be projected onto a satellite or the moon. (a) If this is done with the Mount Wilson telescope, producing a 2.54-m-diameter beam of 633-nm light, what is the minimum angular spread of the beam? (b) Neglecting atmospheric effects, what is the size of the spot this beam would make on the moon, assuming a lunar distance of 3.84108 m?arrow_forwardWhen a monochromatic light of wavelength 430 nm incident on a double slit of slit separation 5 m, there are 11 interference fringes in its central maximum. How many interference fringes will be in the central maximum of a light of wavelength 632.8 nm for the same double slit?arrow_forward
- For 600-nm wavelength light and a slit separation of 0.12 mm, what are the angular positions of the first and third maxima in the double slit interference pattern?arrow_forwardAssuming the angular resolution found for the Hubble Telescope in Example 4.6, what is the smallest detail that could be observed on the moon?arrow_forwardThe first-order Bragg angle for a certain crystal is 12.1°. What is the second-order angle?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY