University Physics Volume 3
17th Edition
ISBN: 9781938168185
Author: William Moebs, Jeff Sanny
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 19P
(a) How wide is a single slit that produces its first minimum for 633-nm light at an angle of 28.0°? (b) At what angle will the second minimum be?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
No chatgpt pls will upvote Already got wrong chatgpt answer
No chatgpt pls will upvote
Taking a Hike
A hiker begins a trip by first walking 21.0 km southeast from her car. She stops and sets up her tent for the night. On the second day, she walks 46.0 km in a direction 60.0° north of east, at which point she discovers a forest ranger's tower.
y (km)
Can
N
W-DE
45.0°
60.0°
Tent
Tower
B
x (km)
☹
(a) Determine the components of the hiker's displacement for each day.
SOLUTION
Conceptualize We conceptualize the problem by drawing a sketch as in the figure. If we denote the displacement vectors on the first and second days by A and B, respectively, and use the ---Select-- as the origin of coordinates, we obtain the vectors shown in the figure. The sketch allows us to estimate the resultant vector as shown.
Categorize Drawing the resultant R, we can now categorize this problem as one we've solved before: --Select-- of two vectors. You should now have a hint of the power of categorization in that many new problems are very similar to problems we have already solved if we are…
Chapter 4 Solutions
University Physics Volume 3
Ch. 4 - Check Your Understanding Suppose the slit width in...Ch. 4 - Check Your Understanding For the experiment in...Ch. 4 - Check Your Understanding For the experiment in...Ch. 4 - Check Your Understanding If the line spacing of a...Ch. 4 - Check Your Understanding What is the angular...Ch. 4 - Check Your Understanding For the experiment...Ch. 4 - As the width of the slit producing a single-slit...Ch. 4 - Compare interference and diffraction.Ch. 4 - If you and a friend are on opposite sides of a...Ch. 4 - What happens to the diffraction pattern of a...
Ch. 4 - In our study of diffraction by a single slit, we...Ch. 4 - A rectangular slit is twice as wide as it is high....Ch. 4 - In Equation 4.4, the parameter looks like an...Ch. 4 - Shown below is the central part of the...Ch. 4 - Is higher resolution obtained in a microscope with...Ch. 4 - The resolving power of refracting telescope...Ch. 4 - The distance between atoms in a molecule is about...Ch. 4 - A beam of light always spreads out. Why can a beam...Ch. 4 - Crystal lattices can be examined with X-rays but...Ch. 4 - How can you tell that a hologram is a true...Ch. 4 - If a hologram is recorded using monochromatic...Ch. 4 - What image will one see if a hologram is recorded...Ch. 4 - (a) At what angle is the first minimum for 550-nm...Ch. 4 - (a) Calculate the angle at which a 2.00-m-wide...Ch. 4 - (a) How wide is a single slit that produces its...Ch. 4 - (a) What is the width of a single slit that...Ch. 4 - Find the wavelength of light that has its third...Ch. 4 - (a) Sodium vapor light averaging 589 nm in...Ch. 4 - Consider a single-slit diffraction pattern for...Ch. 4 - (a) Find the angle between the first minima for...Ch. 4 - What is the minimum width of a single slit (in...Ch. 4 - (a) If a single slit produces a first minimum at...Ch. 4 - If the separation between the first and the second...Ch. 4 - A water break at the entrance to a harbor consists...Ch. 4 - An aircraft maintenance technician walks past a...Ch. 4 - A single slit of width 3.0 m is illuminated by a...Ch. 4 - A single slit of width 0.1 mm is illuminated by a...Ch. 4 - The width of the central peak in a single-slit...Ch. 4 - Consider the single-slit diffraction pattern for...Ch. 4 - Two slits of width 2 m, each in an opaque...Ch. 4 - A double slit produces a diffraction pattern that...Ch. 4 - For a double-slit configuration where the slit...Ch. 4 - Light of wavelength 500 nm falls normally on 50...Ch. 4 - A monochromatic light of wavelength 589 nm...Ch. 4 - When a monochromatic light of wavelength 430 nm...Ch. 4 - Determine the intensities of two interference...Ch. 4 - A diffraction grating has 2000 lines per...Ch. 4 - Find the angle for the third-order maximum for...Ch. 4 - How many lines per centimeter are there on a...Ch. 4 - What is the distance between lines on a...Ch. 4 - Calculate the wavelength of light that has its...Ch. 4 - An electric current through hydrogen gas produces...Ch. 4 - (a) What do the four angles in the preceding...Ch. 4 - What is the spacing between structures in a...Ch. 4 - An opal such as that shown in Figure 4.15 acts...Ch. 4 - At what angle does a diffraction grating produce a...Ch. 4 - (a) Find the maximum number of lines per...Ch. 4 - (a) Show that a 30,000 line per centimeter grating...Ch. 4 - The analysis shown below also applies to...Ch. 4 - The 305-m-diameter Arecibo radio telescope...Ch. 4 - Assuming the angular resolution found for the...Ch. 4 - Diffraction spreading for a flashlight is...Ch. 4 - (a) What is the minimum angular spread of a 633-nm...Ch. 4 - A telescope can be used to enlarge the diameter of...Ch. 4 - The limit to the eye’s acuity is actually related...Ch. 4 - What is the minimum diameter mirror on a telescope...Ch. 4 - Find the radius of a star’s image on the retina of...Ch. 4 - (a) The dwarf planet Pluto and its moon, Charon,...Ch. 4 - A spy satellite orbits Earth at a height of 180...Ch. 4 - What is the minimum angular separation of two...Ch. 4 - The headlights of a car are 1.3 m apart. What is...Ch. 4 - When dots are placed on a page from a laser...Ch. 4 - Suppose you are looking down at a highway from a...Ch. 4 - Can an astronaut orbiting Earth in a satellite at...Ch. 4 - The characters of a stadium scoreboard are formed...Ch. 4 - If a microscope can accept light from objects at...Ch. 4 - A camera uses a lens with aperture 2.0 cm. What is...Ch. 4 - X-rays of wavelength 0.103 nm reflects off a...Ch. 4 - A first-order Bragg reflection maximum is observed...Ch. 4 - An X-ray scattering experiment is performed on a...Ch. 4 - The structure of the NaCl crystal forms reflecting...Ch. 4 - On a certain crystal, a first-order X-ray...Ch. 4 - Calcite crystals contain scattering planes...Ch. 4 - The first-order Bragg angle for a certain crystal...Ch. 4 - White light falls on two narrow slits separated by...Ch. 4 - Microwaves of wavelength 10.0 mm fall normally on...Ch. 4 - Quasars, or quasi-stellar radio sources, are...Ch. 4 - Two slits each of width 1800 nm and separated by...Ch. 4 - A microwave of an unknown wavelength is incident...Ch. 4 - Red light (wavelength 632.8 nm in air) from a...Ch. 4 - A light ray of wavelength 461.9 nm emerges from a...Ch. 4 - How far apart must two objects be on the moon to...Ch. 4 - How far apart must two objects be on the moon to...Ch. 4 - A spy satellite is reputed to be able to resolve...Ch. 4 - Monochromatic light of wavelength 530 nm passes...Ch. 4 - A monochromatic light of unknown wavelength is...Ch. 4 - A source of light having two wavelengths 550 nm...Ch. 4 - A single slit of width 2100 nm is illuminated...Ch. 4 - A single slit of width 3.0 m is illuminated by a...Ch. 4 - A single slit of width 0.10 mm is illuminated by a...Ch. 4 - A diffraction grating produces a second maximum...Ch. 4 - A grating with 4000 lines per centimeter is used...Ch. 4 - A diffraction grating with 2000 lines per...Ch. 4 - For white light (400nm700nm) falling normally on a...Ch. 4 - How many complete orders of the visible spectrum...Ch. 4 - Two lamps producing light of wavelength 589 nm are...Ch. 4 - On a bright clear day, you are at the top of a...Ch. 4 - Radio telescopes are telescopes used for the...Ch. 4 - Calculate the wavelength of light that produces...Ch. 4 - (a) Find the angle of the third diffraction...Ch. 4 - As an example of diffraction by apertures of...Ch. 4 - What are the angular positions of the first and...Ch. 4 - How far would you place a screen from the slit of...Ch. 4 - How narrow is a slit that produces a diffraction...Ch. 4 - Suppose that the central peak of a single-slit...Ch. 4 - The central diffraction peak of the double-slit...Ch. 4 - Determine the intensities of three interference...Ch. 4 - The yellow light from a sodium vapor lamp seems to...Ch. 4 - Structures on a bird feather act like a reflection...Ch. 4 - If a diffraction grating produces a first-order...Ch. 4 - (a) What visible wavelength has its fourth-order...Ch. 4 - Consider a spectrometer based on a diffraction...Ch. 4 - An amateur astronomer wants to build a telescope...Ch. 4 - Blue light of wavelength 450 nm falls on a slit of...Ch. 4 - (a) Assume that the maxima are halfway between the...Ch. 4 - (a) By differentiating Equation 4.4, show that the...Ch. 4 - What is the maximum number of lines per centimeter...Ch. 4 - Show that a diffraction grating cannot produce a...Ch. 4 - A He-Ne laser beam is reflected from the surface...Ch. 4 - Objects viewed through a microscope are placed...
Additional Science Textbook Solutions
Find more solutions based on key concepts
2. List the subdivisions of the thoracic and abdominopelvic cavities.
Human Anatomy & Physiology (2nd Edition)
In your own words, briefly distinguish between relative dates and numerical dates.
Applications and Investigations in Earth Science (9th Edition)
Colored aleurone in the kernels of com is due to the dominant allele R. The recessive allele r, when homozygous...
Concepts of Genetics (12th Edition)
The bond angles in a regular polygon with n sides are equal to 180360n a. What are the bond angles in a regular...
Organic Chemistry (8th Edition)
Body, Heal Thyself The precision of mitotic cell division is essential for repairing damaged tissues like those...
Biology: Life on Earth with Physiology (11th Edition)
How do you think a cell performing cellular respiration rids itself of the resulting CO2?
Campbell Biology in Focus (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Plz plz no chatgpt pls will upvote .arrow_forwardYou want to determine if a new material created for solar panels increases the amount of energy that can be captured . You have acquired 15 panels of different sizes manufactured with different materials including the new material.You decide to set up an experiment to solve this problem .What do you think are the 3 most important variables to address in your experience? How would you incorporate those materials in your experiment?arrow_forwardNo chatgpt pls will upvotearrow_forward
- Why can't this be correct: &= 7m?arrow_forwardgive a brief definition of the word "paradigm" as well as an example of a current scientific paradigmarrow_forward7. Are all scientific theories testable in the commonly understood sense? How does this make you feel? How should you proceed as a scientist or engineer with this understanding?arrow_forward
- What is an an example of a hypothesis that sounds scientific but is notarrow_forwardWhat is an example of a scientific hypothesisarrow_forwardMultiverse is called a theory. It has been proposed to account for the apparent and uncanny fine tuning of our own universe. The idea of the multiverse is that there are infinite, distinct universes out there - all with distinct laws of nature and natural constants - and we live in just one of them. Using the accepted definition of the universe being all that there is (matter, space and energy), would you say that multiverse is a scientific theory?arrow_forward
- How is a law usually different than a theoryarrow_forwardA 1.50 mLmL syringe has an inner diameter of 5.00 mmmm, a needle inner diameter of 0.270 mmmm, and a plunger pad diameter (where you place your finger) of 1.2 cmcm. A nurse uses the syringe to inject medicine into a patient whose blood pressure is 140/100. Part A What is the minimum force the nurse needs to apply to the syringe? Express your answer with the appropriate units. View Available Hint(s)for Part A Hint 1for Part A. How to approach the question The force the nurse applies to the syringe can be determined from the fluid pressure and the area of the plunger. The minimum force corresponds to the patient's lowest blood pressure. Use the following equality 760mmofHg=1atm=1.013×10^5Pa760mmofHg=1atm=1.013×10^5Pa.arrow_forwardA 1.50 mLmL syringe has an inner diameter of 5.00 mmmm, a needle inner diameter of 0.270 mmmm, and a plunger pad diameter (where you place your finger) of 1.2 cmcm. A nurse uses the syringe to inject medicine into a patient whose blood pressure is 140/100. Part A What is the minimum force the nurse needs to apply to the syringe? Express your answer with the appropriate units. View Available Hint(s)for Part A Hint 1for Part A. How to approach the question The force the nurse applies to the syringe can be determined from the fluid pressure and the area of the plunger. The minimum force corresponds to the patient's lowest blood pressure. Use the following equality 760mmofHg=1atm=1.013×10^5Pa760mmofHg=1atm=1.013×10^5Pa.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY