Concept explainers
A typical laboratory diffraction grating has 5.00 × 103 lines/cm, and these lines are contained in a 3.50-cm width of grating. (a) What is the chromatic resolving power of such a grating in the first order? (b) Could this grating resolve the lines of the sodium doublet (see Section 36.5) in the first order? (c) While doing spectral analysis of a star, you are using this grating in the second order to resolve spectral lines that are very close to the 587.8002-nm spectral line of iron. (i) For wavelengths longer than the iron line, what is the shortest wavelength you could distinguish from the iron line? (ii) For wavelengths shorter than the iron line, what is the longest wavelength you could distinguish from the iron line? (iii) What is the range of wavelengths you could not distinguish from the iron line?
Want to see the full answer?
Check out a sample textbook solutionChapter 36 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Additional Science Textbook Solutions
The Cosmic Perspective (8th Edition)
Essential University Physics: Volume 2 (3rd Edition)
Tutorials in Introductory Physics
Physics: Principles with Applications
University Physics Volume 2
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
- On a certain crystal, a first-order X-ray diffraction maximum is observed at an angle of 27.1° relative to its surface, using an X-ray source of unknown wavelength. Additionally, when illuminated with a different, this time of known wavelength 0.137 nm, a second-order maximum is detected at 37.3°. Determine (a) the spacing between the reflecting planes, and (b) the unknown wavelength.arrow_forwardAs a single crystal is rotated in an x-ray spectrometer (Fig. 3.22a), many parallel planes of atoms besides AA and BB produce strong diffracted beams. Two such planes are shown in Figure P3.38. (a) Determine geometrically the interplanar spacings d1 and d2 in terms of d0. (b) Find the angles (with respect to the surface plane AA) of the n = 1, 2, and 3 intensity maxima from planes with spacing d1. Let = 0.626 and d0 = 4.00 . Note that a given crystal structure (for example, cubic) has interplanar spacings with characteristic ratios, which produce characteristic diffraction patterns. In this way, measurement of the angular position of diffracted x-rays may be used to infer the crystal structure. Figure P3.38 Atomic planes in a cubic lattice.arrow_forwardThe structure of the NaCl crystal forms reflecting planes 0.541 nm apart. What is the smallest angle, measured from these planes, at which X-ray diffraction can be observed, if X-rays of wavelength 0.085 nm are used?arrow_forward
- The first-order Bragg angle for a certain crystal is 12.1°. What is the second-order angle?arrow_forwardIf the first-order diffraction maximum is observed at 12.1° for a crystal having an interplanar spacing of 0.280 nm. At what angle will the 4th order diffraction maximum appear? Group of answer choices 48.4 degrees 52.3 degrees 55.6 degrees 57.0 degreesarrow_forwardWhen a diffraction pattern of a crystalline solid is recorded using an X-ray beam of wavelength 0.26 nm, the first order diffraction peak occurs at a scattering angle of 35°. If the error in the measurements of angle and wavelength are 1° and 0.01 nm respectively, then determine the error in measuring the interplanar spacing. (a) 22.86 nm (b) 32.38 nm (c) 15.2 nm (d) 13.2 nmarrow_forward
- A Michelson interferometer is used with red light of wavelength 632.8 nm and is adjusted for a path difference of 20 μm. Determine the angular radius of the (a) first ring observed and (b) the tenth ring observed.arrow_forwardA diffraction grating has a width of 3.5 cm and has 100 lines/cm. Could this diffraction grating be used to resolve the lines of the sodium doublet to the first order? The lines of the sodium doublet are ₁ = 588.995 nm and 12 = 589.592 nm.arrow_forwardds. The metal Rubidium has BCC crystal structure of hike angle of diffraction for the 32.1 set of planes occurs at 27° first order reflection when monochromatic X-radiation wavelength of 0.0721 am is used having Compute (a) The inter-planar spacing for this set of planes. (b) Atomic radius for the rubidium atom. aarrow_forward
- It is intended to determine what type of white pigment has been used as a colorant in a thermoplastic. A pulverized sample is examined with RX diffraction, Cu Kα radiation was used from λ = 1.541A°. A diffraction spectrum with 3 reflections was obtained at 2θ = 31.72Ao, 57.73Ao and 39.12Ao. Ao: Angstrom Determine the type of pigment usedarrow_forwardThe first-order diffraction maximum is observed at 12.4° for a crystal having a spacing between planes of atoms of 0.285 nm. (a) What wavelength x-ray is used to observe this first-order pattern? nm (b) How many orders can be observed for this crystal at this wavelength? A leliarrow_forwardA metal with body centered cubic (bcc) structure show the first (i.e. smallest angle) diffraction peak at a Bragg angle of 0 = 30°. The wavelength of X-ray used is 2.1 Å. The volume of the PRIMITIVE unit cell of the metal is (a) 26.2 (Å)³ (b) 13.1(Á)³ (c) 9.3 (Á)³ (d) 4.6 (Ấ)³arrow_forward
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning