University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 36, Problem 36.2DQ
To determine
To discuss: The difference between the Fresnel and Fraunhofer diffraction and whether they are different physical processes or not.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I need the answer as soon as possible
Question A4
The mineral schreibersite is often found in iron-nickel meteorites. One sample was found to have
a body-centred tetragonal structure with a = 9.0168 Å and c = 4.4491 Å.
Calculate the scattering angle and the multiplicity for the first (lowest 0) diffraction peak, using Cu
Ka radiation of wavelength X = 1.5406 Å.
Incident
nA =
SQ + QT
(3.19)
na = dnki sin 0+ dnki sin 0
(3.20)
= 2drki sin 0
H.W.
Derive equation 3.20 (Bragg's Law)
from equation 3.19 using trigonometry formulas.
Chapter 36 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 36.1 - Can sound waves undergo diffraction around an...Ch. 36.2 - Rank the following single-slit diffraction...Ch. 36.3 - Coherent electromagnetic radiation is sent through...Ch. 36.4 - Suppose two slits, each of width a, are separated...Ch. 36.5 - What minimum number of slits would be required in...Ch. 36.6 - Prob. 36.6TYUCh. 36.7 - Prob. 36.7TYUCh. 36 - Why can we readily observe diffraction effects for...Ch. 36 - Prob. 36.2DQCh. 36 - You use a lens of diameter D and light of...
Ch. 36 - Light of wavelength and frequency f passes...Ch. 36 - In a diffraction experiment with waves of...Ch. 36 - An interference pattern is produced by four...Ch. 36 - Phasor Diagram for Eight Slits. An interference...Ch. 36 - A rainbow ordinarily shows a range of colors (see...Ch. 36 - Some loudspeaker horns for outdoor concerts (at...Ch. 36 - Figure 31.12 (Section 31.2) shows a loudspeaker...Ch. 36 - Prob. 36.11DQCh. 36 - With which color of light can the Hubble Space...Ch. 36 - At the end of Section 36.4, the following...Ch. 36 - Prob. 36.14DQCh. 36 - Why is a diffraction grating better than a...Ch. 36 - One sometimes sees rows of evenly spaced radio...Ch. 36 - Prob. 36.17DQCh. 36 - Prob. 36.18DQCh. 36 - Ordinary photographic film reverses black and...Ch. 36 - Monochromatic light from a distant source is...Ch. 36 - Parallel rays of green mercury light with a...Ch. 36 - Light of wavelength 585 nm falls on a slit 0.0666...Ch. 36 - Light of wavelength 633 nm from a distant source...Ch. 36 - Diffraction occurs for all types of waves,...Ch. 36 - CP Tsunami! On December 26, 2004, a violent...Ch. 36 - Prob. 36.7ECh. 36 - Monochromatic electromagnetic radiation with...Ch. 36 - Doorway Diffraction. Sound of frequency 1250 Hz...Ch. 36 - Figure 31.12 (Section 31.2) shows a loudspeaker...Ch. 36 - Red light of wavelength 633 nm from a helium neon...Ch. 36 - Public Radio station KXPR-FM in Sacramento...Ch. 36 - Monochromatic light of wavelength 580 nm passes...Ch. 36 - Monochromatic light of wavelength = 620 nm from a...Ch. 36 - A slit 0.240 mm wide is illuminated by parallel...Ch. 36 - Monochromatic light of wavelength 592 nm from a...Ch. 36 - A single-slit diffraction pattern is formed by...Ch. 36 - Parallel rays of monochromatic light with...Ch. 36 - Number of Fringes in a Diffraction Maximum. In...Ch. 36 - Diffraction and Interference Combined. Consider...Ch. 36 - An interference pattern is produced by light of...Ch. 36 - Laser light of wavelength 500.0 nm illuminates two...Ch. 36 - When laser light of wavelength 632.8 nm passes...Ch. 36 - Monochromatic light is at normal incidence on a...Ch. 36 - If a diffraction grating produces its third-order...Ch. 36 - If a diffraction grating produces a third-order...Ch. 36 - Visible light passes through a diffraction grating...Ch. 36 - The wavelength range of the visible spectrum is...Ch. 36 - (a) What is the wavelength of light that is...Ch. 36 - CDs and DVDs as Diffraction Gratings. A laser beam...Ch. 36 - A typical laboratory diffraction grating has 5.00 ...Ch. 36 - Identifying Isotopes by Spectra. Different...Ch. 36 - The light from an iron arc includes many different...Ch. 36 - If the planes of a crystal are 3.50 (1 = 1010 m...Ch. 36 - Prob. 36.35ECh. 36 - Monochromatic x rays are incident on a crystal for...Ch. 36 - Monochromatic light with wavelength 620 nm passes...Ch. 36 - Monochromatic light with wavelength 490 nm passes...Ch. 36 - Two satellites at an altitude of 1200 km are...Ch. 36 - BIO If you can read the bottom row of your doctors...Ch. 36 - The VLBA (Very Long Baseline Array) uses a number...Ch. 36 - Searching for Planets Around Other Stars. If an...Ch. 36 - Hubble Versus Arecibo. The Hubble Space Telescope...Ch. 36 - Photography. A wildlife photographer uses a...Ch. 36 - Observing Jupiter. You are asked to design a space...Ch. 36 - Coherent monochromatic light of wavelength passes...Ch. 36 - BIO Thickness of Human Hair. Although we have...Ch. 36 - CP A loudspeaker with a diaphragm that vibrates at...Ch. 36 - Laser light of wavelength 632.8 nm falls normally...Ch. 36 - Grating Design. Your boss asks you to design a...Ch. 36 - Measuring Refractive Index. A thin slit...Ch. 36 - Underwater Photography. An underwater camera has a...Ch. 36 - CALC The intensity of light in the Fraunhofer...Ch. 36 - A slit 0.360 mm wide is illuminated by parallel...Ch. 36 - CP CALC In a large vacuum chamber, monochromatic...Ch. 36 - CP In a laboratory, light from a particular...Ch. 36 - What is the longest wavelength that can be...Ch. 36 - It has been proposed to use an array of infrared...Ch. 36 - A diffraction grating has 650 slits/mm. What is...Ch. 36 - Quasars, an abbreviation for quasi-stellar radio...Ch. 36 - A glass sheet is covered by a very thin opaque...Ch. 36 - BIO Resolution of the Eye. The maximum resolution...Ch. 36 - DATA While researching the use of laser pointers,...Ch. 36 - DATA Your physics study partner tells you that the...Ch. 36 - DATA At the metal fabrication company where you...Ch. 36 - Intensity Pattern of N Slits. (a) Consider an...Ch. 36 - CALC Intensity Pattern of N Silts, Continued. Part...Ch. 36 - CALC It is possible to calculate the intensity in...Ch. 36 - Prob. 36.69PPCh. 36 - BRAGG REFLECTION ON A DIFFERENT SCALE. A colloid...Ch. 36 - Prob. 36.71PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You measure the distance between the finges of a diffraction pattern as follows: Distance (mm): 3.37, 3.38, 3.25 You measure the distance seven additional times to obtain the following ten values: Distance (mm): 3.37, 3.38, 3.25, 3.19, 3.18, 3.30, 3.21, 3.16, 3.20, 1.46 What values for the distance and uncertainty would you report using the first three measurements and the entire set of ten measurements?arrow_forwardYou measure the distance between the finges of a diffraction pattern as follows: Distance (mm): 3.01, 3.27, 3.28 You measure the distance eight additional times to obtain the following ten values: Distance (mm): 3.01, 3.27, 3.28, 3.31, 3.16, 3.17, 3.15, 3.25, 3.18, 1.46 What values for the distance and uncertainty would you report using the first three measurements and the entire set of ten measurements? Group of answer choices First three: (3.22 ± 0.03) mm, All ten: (3.22 ± 0.02) mm First three: (3.19 ± 0.09) mm, All ten: (3.0 ± 0.2) mm First three: (3.186667 ± 0.07216237) mm, All ten: (3.201000 ± 0.02613236) mm First three: (3.216667 ± 0.02880329) mm, All ten: (3.216000 ± 0.02379916) mm First three: (3.240000 ± 0.04082483) mm, All ten: (3.217000 ± 0.02702036) mm First three: (3.24 ± 0.04) mm, All ten: (3.22 ± 0.03) mmarrow_forwardThe electric fields from three coherent sources are described by E1=E0 sin ωt, E2 =E0sin(ωt+Φ), and E3= E0 sin(ωt+2Φ ). Let the resultant field be represented byEP= ER sin(ωt+ α). Use phasors to find ER and when Can you solve briefly and fasly plzarrow_forward
- You are directing a laser at a diffraction grating with 300 line per mm to project diffracted images onto a wall to measure distances for each order and calculate their associated angles and wavelenths. If the grating used had actually contained fewer lines per meter, what differences would you expect? Explain.arrow_forwardLight-source having linewidth of 100 nm centered at 500 nm is used to gain approximately monochromatic light from a white source. Calculate:a. the coherence timeb. the coherence length.Given [ ∆λ/λ = ∆f/f ]arrow_forward) Consider a crystal consisting of m + 1 lattice planes of spacing d, of total thickness t = md, being set for diffraction as depicted in Fig. 2. At the incidence angle ӨB, Braggs law is satisfied. Explain the phenomenon through which the angles Ө1 and Ө2 are the limiting angles at which the diffracted intensity falls to zero.arrow_forward
- When an x-ray beam is scattered off the planes of a crystal, the scattered beam creates an interference pattern. This phenomenon is called Bragg scattering. For an observer to measure an interference maximum, two conditions have to be satisfied: 1. The angle of incidence has to be equal to the angle of reflection. 2. The difference in the beam's path from a source to an observer for neighboring planes has to be equal to an integer multiple of the wavelength; that is, 2d sin(0) = mx for m = 1, 2, .... The path difference 2d sin(0) can be determined from the diagram (Figure 1). The second condition is known as the Bragg condition. Figure 1 of 1 d sine d sine Review nstants Part A An x-ray beam with wavelength 0.260 nm is directed at a crystal. As the angle of incidence increases, you observe the first strong interference maximum at an angle 20.5 °. What is the spacing d between the planes of the crystal? Express your answer in nanometers to four significant figures. VE ΑΣΦ ? d = nm…arrow_forwardin the Cauchy equation if A=1.614 and B=0.0296µm^2 and wavelength is 549.5nm, the index of refraction n equal to . 1.687 O 1.645 1.598 O 1.712arrow_forward2. Suppose that an ideal polarizer is rotated at an angular frequency w between a similar pair stationary crossed polarizers. Show that the emergent flux density will be modulated at four times the rotational frequency. In other words show that: I = o (1– cos 4@t) 16 where Io is the flux density of the incident unpolarized light and I is the final flux density.arrow_forward
- Consider two EM waves of the same frequency. One (f1) has three times the amplitude of the other (f2). What is the ratio of the energies contained within the waves? Express your answer as a ration, i.e., 5/2, 6/1, etc.arrow_forwardAs a single crystal is rotated in an x-ray spectrometer (Fig. 3.22a), many parallel planes of atoms besides AA and BB produce strong diffracted beams. Two such planes are shown in Figure P3.38. (a) Determine geometrically the interplanar spacings d1 and d2 in terms of d0. (b) Find the angles (with respect to the surface plane AA) of the n = 1, 2, and 3 intensity maxima from planes with spacing d1. Let = 0.626 and d0 = 4.00 . Note that a given crystal structure (for example, cubic) has interplanar spacings with characteristic ratios, which produce characteristic diffraction patterns. In this way, measurement of the angular position of diffracted x-rays may be used to infer the crystal structure. Figure P3.38 Atomic planes in a cubic lattice.arrow_forwardRadio telescopes are telescopes used for the detection of radio emission from space. Because radio waves have much longer wavelengths than visible light, the diameter of a radio telescope must be very large to provide good resolution. For example, the radio telescope in Penticton, BC in Canada, has a diameter of 26 m and can be operated at frequencies as high as 6.6 GHz. (a) What is the wavelength corresponding to this frequency? (b) What is the angular separation of two radio sources that can be resolved by this telescope? (c) Compare the telescope’s resolution with the angular size of the moon.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax