Concept explainers
BRAGG REFLECTION ON A DIFFERENT SCALE. A colloid consists of particles of one type of substance dispersed in another substance. Suspensions of electrically charged microspheres (microscopic spheres, such as polystyrene) in a liquid such as water can form a colloidal crystal when the microspheres arrange themselves in a regular repeating pattern under the influence of the electrostatic force. Colloidal crystals can selectively manipulate different wavelengths of visible light. Just as we can study crystal-line solids by using Bragg reflection of x rays, we can study colloidal crystals through Bragg scattering of visible light from the regular arrangement of charged microspheres. Because the light is traveling through a liquid when it experiences the path differences that lead to constructive interference, it is the wavelength in the liquid that determines the angles at which Bragg reflections are seen In one experiment, laser
36.70 What plane spacing in the colloidal crystal could produce the maximum in this experiment? (a) 390 nm; (b) 520 nm; (c) 650 nm; (d) 780 nm.
Trending nowThis is a popular solution!
Chapter 36 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
- In each of the following situations, a wave passes through an opening in an absorbing wall. Rank the situations in order from the one in which the wave is best described by the ray approximation to the one ill which the wave coming through the opening spreads out most nearly equally in all directions in the hemisphere beyond the wall, (a) The sound of a low whistle at 1 kHz passes through a doorway 1 m wide, (b) Red light passes through the pupil of your eye. (c) Blue light passes through the pupil of your eye. (d) The wave broadcast by an AM radio station passes through a doorway 1 m wide, (e) An x-ray passes through the space between bones in your elbow Joint.arrow_forwardA colloid consists of particles of one type of substance dispersed in another substance. Suspensions of electrically charged microspheres (microscopic spheres, such as polystyrene) in a liquid such as water can form a colloidal crystal when the microspheres arrange themselves in a regular repeating pattern under the influence of the electrostatic force. Colloidal crystals can selectively manipulate different wavelengths of visible light. Just as we can study crystalline solids by using Bragg reflection of x rays, we can study colloidal crystals through Bragg scattering of visible light from the regular arrangement of charged microspheres. Because the light is traveling through a liquid when it experiences the path differences that lead to constructive interference, it is the wavelength in the liquid that determines the angles at which Bragg reflections are seen. In one experiment, laser light with a wavelength in vacuum of 650 nm is passed through a sample of charged polystyrene…arrow_forwardIn the figure, first-order reflection from the reflection planes shown occurs when an x-ray beam of wavelength 0.820 nm makes an angle θ = 62.3˚ with the top face of the crystal. What is the unit cell size a0?arrow_forward
- Solar cells are an example of anti-reflective coatings. Let a silicon solar cell (n = 3.45) coated with a layer of silicon dioxide (n = 1.45). Calculate the minimum coating thickness that will minimize the reflection of the light with wavelength of 650 nm?arrow_forwardPotassium chloride (KCl) is an ionic solid with a crystalline structure whose planes are 0.314 nm apart. X-rays of wavelength 0.267 nm are used in a Bragg diffraction experiment to study the crystalline structure. At what angle with respect to the atomic planes in the crystal would you expect the first strong reflection to occur?arrow_forward3. a) Calculate the reflectance of a quarter-wave anti-reflecting film of magnesium fluoride (n = 1.35) coated on an optical glass surface of index 1.52. b) Calculate the peak reflectance of a high-reflecting multilayer film consisting of N = 4 stacks of coating materials with high-low refractive index (nH = 2.8 and n, = 1.4).arrow_forward
- Light that is initially travelling in a layer of diamond is incident on a layer of sapphire as shown in Figure 5. The sapphire layer has thickness T = 3 cm. The angle inside the sapphire is 6, = 50°. When the light reaches a third layer, it experiences total internal reflection. The material of the third layer is unknown. Figure 5 also shows a table with indices of refraction for various materials. Index of Diamond Material Refraction Ice 1.31 Fluorite 1.43 Sapphire Sapphire 1.77 ? Diamond 2.42 Titanium 2.90 Dioxide Figure 5 14. What is the incident angle 8, inside the diamond? a) 8, x 24° b) e, x 34° c) 8, x 44° d) e, x 54° e) 8, x 64° 15. What is the horizontal distance x travelled inside the sapphire? a) x x 6.4 cm b) x x 7.2 cm c) x x 8.6 cm d) x x 9.3 cm e) x x 12.1 cm 16. Which of the following could be the material of the third layer? a) Ice only b) Fluorite only c) Either ice or fluorite d) Titanium dioxide only e) None of the abovearrow_forwardOn a certain crystal, a first-order X-ray diffraction maximum is observed at an angle of 27.1° relative to its surface, using an X-ray source of unknown wavelength. Additionally, when illuminated with a different known wavelength of 0.137 nm, a second-order maximum is detected at 37.3°. Determine a. the spacing between the reflecting planes. b. the unknown wavelength.arrow_forwarda)If the refractive index of glass is 1.55 and the refractive index of air is 1.0003, what is the critical angle for total internal reflection at the glass/air interface? b) If the refractive index of glass is 1.55 and the refractive index of the hydrated ion-selective film is 1.34, what is the critical angle for total internal reflection at the glass/film interface?arrow_forward
- Solar cells—devices that generate electricity when exposed to sunlight—are often coated with a transparent, thin film of silicon monoxide (SiO, n = 1.45) to minimize reflective losses from the surface. Suppose a silicon solar cell (n = 3.5) is coated with a thin film of silicon monoxide for this purpose (as shown). Determine the minimum film thickness that produces the least reflection at a wavelength of 550 nm, near the center of the visible spectrum.arrow_forwardWhen an x-ray beam is scattered off the planes of a crystal, the scattered beam creates an interference pattern. This phenomenon is called Bragg scattering. For an observer to measure an interference maximum, two conditions have to be satisfied: 1. The angle of incidence has to be equal to the angle of reflection. 2. The difference in the beam's path from a source to an observer for neighboring planes has to be equal to an integer multiple of the wavelength; that is, 2d sin(0) = mx for m = 1, 2, .... The path difference 2d sin(0) can be determined from the diagram (Figure 1). The second condition is known as the Bragg condition. Figure 1 of 1 d sine d sine Review nstants Part A An x-ray beam with wavelength 0.260 nm is directed at a crystal. As the angle of incidence increases, you observe the first strong interference maximum at an angle 20.5 °. What is the spacing d between the planes of the crystal? Express your answer in nanometers to four significant figures. VE ΑΣΦ ? d = nm…arrow_forwardA quarter-wave plate is made from a material whose indices of refraction for light of free-space wavelength Ao = 589 nm are n = 1.732 and n = 1.456. What is the minimum necessary thickness of the plate for this wavelength?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax