Concept explainers
CDs and DVDs as Diffraction Gratings. A laser beam of wavelength λ = 632.8 nm shines at normal incidence on the reflective side of a compact disc. (a) The tracks of tiny pits in which information is coded onto the CD are 1.60 μm apart. For what angles of reflection (measured from the normal) will the intensity of light be maximum? (b) On a DVD, the tracks are only 0.740 μm apart. Repeat the calculation of part (a) for the DVD.
Want to see the full answer?
Check out a sample textbook solutionChapter 36 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Additional Science Textbook Solutions
Physics: Principles with Applications
Life in the Universe (4th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Applied Physics (11th Edition)
Cosmic Perspective Fundamentals
- Astronomers observe the chromosphere of the Sun with a filter that passes the red hydrogen spectral line of wavelength 656.3 nm, called the H line. The filter consists of a transparent dielectric of thickness d held between two partially aluminized glass plates. The filter is held at a constant temperature. (a) Find the minimum value of d that produces maximum transmission of perpendicular H light if the dielectric has an index of refraction of 1.378. (b) What If? If the temperature of the filter increases above the normal value, increasing its thickness, what happens to the transmitted wavelength? (c) The dielectric will also pass what near-visible wavelength? One of the glass plates is colored red to absorb this light.arrow_forwardK A light ray with a wavelength of 589 nanometers (produced by a sodium lamp) traveling through air makes an angle of = to find the angle of refraction, V2 sin 0₁ V₁ y incidence of 55° on a smooth, flat slab of dense flint glass. Use Snell's Law, sin 02 where the index of refraction is 1.66. ... The angle of refraction is approximately degrees. (Type an integer or decimal rounded to two decimal places as needed.)arrow_forwardA ray of light consisting of blue light (wavelength 480 nm) and red light (wavelength 670 nm) is incident on a thick piece of glass at 80°. What is the angular separation between the refracted red and refracted blue beams while they are in the glass? (The respective indices of refraction for the blue light and the red light are 1.4636 and 1.4561.) O 0.27° 0.33° O 0.36° O 0.46° O 0.54°arrow_forward
- Ch26,P24arrow_forwardA fiber optic is made by cladding a thin fiber core of refractive index n₁ = 1.45 with a material of refractive index n₂ = 1.38. What is the maximum incident angle, 0, so that the light ray is totally internally reflected inside the fiber?arrow_forwardA thin coating is applied to a lens to protect against UV light. The coating strongly reflects light of wavelength 384 nm and strongly transmits light of wavelength 528 nm (i.e. visible light, near the middle of the visible spectrum.) The index of refraction of the coating material is 1.58 and the lens is made of a material with index 1.48. Find the smallest possible thickness for the coating.arrow_forward
- The plane z = 0 separates two media: glass(nglass = 1.51 for z < 0) and water (nH20 = 1.33 for z > 0). The optical beam of a helium-cadmium (He-Cd) laser has a wavelength in vacuum of 325 nm. Consider that the laser beam propagates in the x-z plane from the glass side towards the glass/water interface at an angle of incidence of 30° (angle between the incident beam and the normal to the interface). Determine the Cartesian components of the k-vector (kx, ky, kz) for the incident reflected, and transmitted beams.arrow_forwardlet a beam of x rays of wavelength 0.125 nm be incident on an NaCl crystal at angle u 45.0° to the top face of the crystal and a family of reflecting planes. Let the reflecting planes have separation d = 0.252 nm. The crystal is turned through angle f around an axis perpendicular to the plane of the page until these reflecting planes give diffraction maxima. What are the (a) smaller and (b) larger value of f if the crystal is turned clockwise and the (c) smaller and (d) larger value of f if it is turned counterclockwise?arrow_forwardA narrow beam of light with wavelengths from 450 nm to 700 nm is incident perpendicular to one face of a prism made of crown glass, for which the index of refraction ranges from n = 1.533 to n = 1.517 for those wavelengths. The light strikes the opposite side of the prism at an angle of 40°. What is the angular spread of the beam as it leaves the prism?arrow_forward
- An optic fiber is a clear solid tube designed to transmit light pulses in a particular direction. To minimize losses, you want light hitting the inside surface of the tube to reflect for as large a range of angles as possible. Should the index of refraction of the fiber be large or small? Why?arrow_forwardThe refractive indices for quartz at 762 nm wavelength for left- and right-circularly polarized light are nL= 1.53920 and nR= 1.53914. (a) What thickness of quartz is required to give an optical rotation of 10⁰ at this wavelength? (b) What is the specific rotation of quartz for this wavelength in degree/mm? NOTE, I do not want you to use Chatgpt for the answer. I asked Chatgpt, and every time the answer provided was wrong.arrow_forwardA parallel beam of light containing red (660 nm) and violet (410 nm) wavelengths goes from polystyrene to water, striking the surface between them at a 56.0° incident angle. The indices of refraction for red and violet light in polystyrene are respectively 1.488 and 1.506. The index of refraction for red and violet light in water is respectively 1.331 and 1.342. What is the angle between the two colors in water?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning