University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 36, Problem 36.36E
Monochromatic x rays are incident on a crystal for which the spacing of the atomic planes is 0.440 nm. The first-order maximum in the Bragg reflection occurs when the incident and reflected x rays make an angle of 39.4° with the crystal planes. What is the wavelength of the x rays?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
When an x-ray beam is scattered off the planes of a
crystal, the scattered beam creates an interference
pattern. This phenomenon is called Bragg scattering. For
an observer to measure an interference maximum, two
conditions have to be satisfied:
1. The angle of incidence has to be equal to
the angle of reflection.
2. The difference in the beam's path from a
source to an observer for neighboring
planes has to be equal to an integer
multiple of the wavelength; that is,
2d sin(0) = mx for m = 1, 2, ....
The path difference 2d sin(0) can be determined from
the diagram (Figure 1). The second condition is known as
the Bragg condition.
Figure
1 of 1
d sine
d sine
Review
nstants
Part A
An x-ray beam with wavelength 0.260 nm is directed at a crystal. As the angle of incidence increases, you observe
the first strong interference maximum at an angle 20.5 °. What is the spacing d between the planes of the crystal?
Express your answer in nanometers to four significant figures.
VE ΑΣΦ
?
d =
nm…
You are performing research in an x-ray diffraction laboratory. In one of your experiments, you wish to study x-ray diffraction from a crystal of NaCl using x-rays of wavelength 0.136 nm. (a) For how many angles do you expect to detect a diffraction maximum from the crystal if your x-rays are reflecting from the shaded planes as shown? (b) In another experiment, the crystal is rotated so that the reflections of x-rays arise from parallel planes of sodium and chlorine ions. as shown shows portions of these planes containing atoms within the unit cell. Imagine extending these portions outward to form large planes, one with only sodium ions and the other with only chlorine ions. Considering these planes, for how many angles do you expect to detect a diffraction maximum from the crystal using the same x-rays?
A He-Ne gas laser which produces monochromatic light of a known wavelength ? =6.35 ? 10^−7 ? is used to calibrate a reflection grating in a spectroscope. The first-orderdiffraction line is found at an angle of 22 degrees to the incident beam. How many lines per meter are there on the grating?
Chapter 36 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 36.1 - Can sound waves undergo diffraction around an...Ch. 36.2 - Rank the following single-slit diffraction...Ch. 36.3 - Coherent electromagnetic radiation is sent through...Ch. 36.4 - Suppose two slits, each of width a, are separated...Ch. 36.5 - What minimum number of slits would be required in...Ch. 36.6 - Prob. 36.6TYUCh. 36.7 - Prob. 36.7TYUCh. 36 - Why can we readily observe diffraction effects for...Ch. 36 - Prob. 36.2DQCh. 36 - You use a lens of diameter D and light of...
Ch. 36 - Light of wavelength and frequency f passes...Ch. 36 - In a diffraction experiment with waves of...Ch. 36 - An interference pattern is produced by four...Ch. 36 - Phasor Diagram for Eight Slits. An interference...Ch. 36 - A rainbow ordinarily shows a range of colors (see...Ch. 36 - Some loudspeaker horns for outdoor concerts (at...Ch. 36 - Figure 31.12 (Section 31.2) shows a loudspeaker...Ch. 36 - Prob. 36.11DQCh. 36 - With which color of light can the Hubble Space...Ch. 36 - At the end of Section 36.4, the following...Ch. 36 - Prob. 36.14DQCh. 36 - Why is a diffraction grating better than a...Ch. 36 - One sometimes sees rows of evenly spaced radio...Ch. 36 - Prob. 36.17DQCh. 36 - Prob. 36.18DQCh. 36 - Ordinary photographic film reverses black and...Ch. 36 - Monochromatic light from a distant source is...Ch. 36 - Parallel rays of green mercury light with a...Ch. 36 - Light of wavelength 585 nm falls on a slit 0.0666...Ch. 36 - Light of wavelength 633 nm from a distant source...Ch. 36 - Diffraction occurs for all types of waves,...Ch. 36 - CP Tsunami! On December 26, 2004, a violent...Ch. 36 - Prob. 36.7ECh. 36 - Monochromatic electromagnetic radiation with...Ch. 36 - Doorway Diffraction. Sound of frequency 1250 Hz...Ch. 36 - Figure 31.12 (Section 31.2) shows a loudspeaker...Ch. 36 - Red light of wavelength 633 nm from a helium neon...Ch. 36 - Public Radio station KXPR-FM in Sacramento...Ch. 36 - Monochromatic light of wavelength 580 nm passes...Ch. 36 - Monochromatic light of wavelength = 620 nm from a...Ch. 36 - A slit 0.240 mm wide is illuminated by parallel...Ch. 36 - Monochromatic light of wavelength 592 nm from a...Ch. 36 - A single-slit diffraction pattern is formed by...Ch. 36 - Parallel rays of monochromatic light with...Ch. 36 - Number of Fringes in a Diffraction Maximum. In...Ch. 36 - Diffraction and Interference Combined. Consider...Ch. 36 - An interference pattern is produced by light of...Ch. 36 - Laser light of wavelength 500.0 nm illuminates two...Ch. 36 - When laser light of wavelength 632.8 nm passes...Ch. 36 - Monochromatic light is at normal incidence on a...Ch. 36 - If a diffraction grating produces its third-order...Ch. 36 - If a diffraction grating produces a third-order...Ch. 36 - Visible light passes through a diffraction grating...Ch. 36 - The wavelength range of the visible spectrum is...Ch. 36 - (a) What is the wavelength of light that is...Ch. 36 - CDs and DVDs as Diffraction Gratings. A laser beam...Ch. 36 - A typical laboratory diffraction grating has 5.00 ...Ch. 36 - Identifying Isotopes by Spectra. Different...Ch. 36 - The light from an iron arc includes many different...Ch. 36 - If the planes of a crystal are 3.50 (1 = 1010 m...Ch. 36 - Prob. 36.35ECh. 36 - Monochromatic x rays are incident on a crystal for...Ch. 36 - Monochromatic light with wavelength 620 nm passes...Ch. 36 - Monochromatic light with wavelength 490 nm passes...Ch. 36 - Two satellites at an altitude of 1200 km are...Ch. 36 - BIO If you can read the bottom row of your doctors...Ch. 36 - The VLBA (Very Long Baseline Array) uses a number...Ch. 36 - Searching for Planets Around Other Stars. If an...Ch. 36 - Hubble Versus Arecibo. The Hubble Space Telescope...Ch. 36 - Photography. A wildlife photographer uses a...Ch. 36 - Observing Jupiter. You are asked to design a space...Ch. 36 - Coherent monochromatic light of wavelength passes...Ch. 36 - BIO Thickness of Human Hair. Although we have...Ch. 36 - CP A loudspeaker with a diaphragm that vibrates at...Ch. 36 - Laser light of wavelength 632.8 nm falls normally...Ch. 36 - Grating Design. Your boss asks you to design a...Ch. 36 - Measuring Refractive Index. A thin slit...Ch. 36 - Underwater Photography. An underwater camera has a...Ch. 36 - CALC The intensity of light in the Fraunhofer...Ch. 36 - A slit 0.360 mm wide is illuminated by parallel...Ch. 36 - CP CALC In a large vacuum chamber, monochromatic...Ch. 36 - CP In a laboratory, light from a particular...Ch. 36 - What is the longest wavelength that can be...Ch. 36 - It has been proposed to use an array of infrared...Ch. 36 - A diffraction grating has 650 slits/mm. What is...Ch. 36 - Quasars, an abbreviation for quasi-stellar radio...Ch. 36 - A glass sheet is covered by a very thin opaque...Ch. 36 - BIO Resolution of the Eye. The maximum resolution...Ch. 36 - DATA While researching the use of laser pointers,...Ch. 36 - DATA Your physics study partner tells you that the...Ch. 36 - DATA At the metal fabrication company where you...Ch. 36 - Intensity Pattern of N Slits. (a) Consider an...Ch. 36 - CALC Intensity Pattern of N Silts, Continued. Part...Ch. 36 - CALC It is possible to calculate the intensity in...Ch. 36 - Prob. 36.69PPCh. 36 - BRAGG REFLECTION ON A DIFFERENT SCALE. A colloid...Ch. 36 - Prob. 36.71PP
Additional Science Textbook Solutions
Find more solutions based on key concepts
If acceleration is proportional to the net force or is equal to net force.
Conceptual Physics (12th Edition)
A friend says, “It makes no sense that Anna could turn on lights in her hands simultaneously in her frame but t...
Modern Physics
The particle that have constant velocity in a region of zero electric field has zero magnetic field.
Physics (5th Edition)
50. ** Viscous friction with Bernoulli We can include the effect of viscous friction in Bernoulli's equation by...
College Physics
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective
31. Your forehead can withstand a force of about 6.0 kN before fracturing, while your cheekbone can withstand o...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A beam of 580-nm light passes through two closely spaced glass plates at close to normal incidence as shown in Figure P27.23. For what minimum nonzero value of the plate separation d is the transmitted light bright?arrow_forwardTable P35.80 presents data gathered by students performing a double-slit experiment. The distance between the slits is 0.0700 mm, and the distance to the screen is 2.50 m. The intensity of the central maximum is 6.50 106 W/m2. What is the intensity at y = 0.500 cm? TABLE P35.80arrow_forwardThe structure of the NaCl crystal forms reflecting planes 0.541 nm apart. What is the smallest angle, measured from these planes, at which X-ray diffraction can be observed, if X-rays of wavelength 0.085 nm are used?arrow_forward
- X-rays of wavelength 0.103 nm reflects off a crystal and a second-order maximum is recorded at a Bragg angle of 25.5°. What is the spacing between the scattering planes in this crystal?arrow_forwardBoth sides of a uniform film that has index of refraction n and thickness d are in contact with air. For normal incidence of light, an intensity minimum is observed in the reflected light at λ2 and an intensity maximum is observed at λ1, where λ1 > λ2. (a) Assuming no intensity minima are observed between λ1 and λ2, find an expression for the integer m in Equations 27.13 and 27.14 in terms of the wavelengths λ1 and λ2. (b) Assuming n = 1.40, λ1 = 500 nm, and λ2 = 370 nm, determine the best estimate for the thickness of the film.arrow_forwardAstronomers observe the chromosphere of the Sun with a filter that passes the red hydrogen spectral line of wavelength 656.3 nm, called the H line. The filter consists of a transparent dielectric of thickness d held between two partially aluminized glass plates. The filter is held at a constant temperature. (a) Find the minimum value of d that produces maximum transmission of perpendicular H light if the dielectric has an index of refraction of 1.378. (b) What If? If the temperature of the filter increases above the normal value, increasing its thickness, what happens to the transmitted wavelength? (c) The dielectric will also pass what near-visible wavelength? One of the glass plates is colored red to absorb this light.arrow_forward
- In a laboratory, light from a particular spectrum line of helium passes through a diffraction grating and the second-order maximum is at 18.9° from the center of the central bright fringe. The same grating is then used for light from a distant galaxy that is moving away from the earth with a speed of 2.65 x 107 m/s. For the light from the galaxy, what is the angular location of the second-order maximum for the same spectral line as was observed in the lab?arrow_forwardIn the figure, first-order reflection from the reflection planes shown occurs when an x-ray beam of wavelength 0.820 nm makes an angle θ = 62.3˚ with the top face of the crystal. What is the unit cell size a0?arrow_forwardLight of wavelength 580 nm falls on a calcite crystal of certain thickness. The emerging light is circularly polarized. What must be the thickness of such crystal?arrow_forward
- A monochromatic light with 536nm pass through a slit that is 0.240 mm wide. In the resulting diffraction pattern, the intensity at the center of the central maximum is 4.00 *10-5 W/m2. What is the intensity at a point on the screen the corresponding to θ=1.20˚?arrow_forwardIn the lab, you want to use a spectrometer to study the emission spectrum of a gas. This device works by having the light go through a diffraction grating and then carefully measuring the angle at which the light exits the grating. The problem is that the grating that you have is not labeled, so you do not know the spacing. To calibrate the spectrometer, you send a HeNe laser (wavelength 632.8nm) through the grating and observe it to exit at an angle of 37.6° in the second order by this grating. (For obscure technical reasons, the first order is not observable.) Light from the gas is then measured to be deflected by 34.9° in the second order. What is the wavelength of the light that is to be measured?arrow_forwardThe angle of a Bragg reflection from a set of crystal planes separated by 128.2 pm is 19.76°. Calculate the wavelength of the X‑rays.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY