University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 36, Problem 36.29E
(a) What is the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is the longest wavelength that can be observed in the third order for a transmission grating having 5900 slits/cm ? Assume normal incidence.
(a) What is the intensity (in W/cm?) on the retina when looking directly
at the sun? Assume that the eye's pupil has a radius rpupil = 1 mm.
Take the Sun's irradiance at the earth's surface to be 1.1 kW/m?, and
neglect refractive index (i.e. set n = 1). HINT: The Earth-Sun distance
is do = 1.5 x 108 km and the pupil-retina distance is dį = 22 mm. The
radius of the Sun rsun = 7.0 × 105 km is de-magnified on the retina
according to the ratio d;/do.
When a vertical beam of light passes through a transparent medium, the rate at which its intensity I decreases is proportional to
I(t),
where t represents the thickness of the medium (in feet). In clear seawater, the intensity 3 feet below the surface is 25% of the initial intensity
I0
of the incident beam. What is the intensity of the beam 14 feet below the surface? (Give your answer in terms of
I0.
Round any constants or coefficients to five decimal places.)
Chapter 36 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 36.1 - Can sound waves undergo diffraction around an...Ch. 36.2 - Rank the following single-slit diffraction...Ch. 36.3 - Coherent electromagnetic radiation is sent through...Ch. 36.4 - Suppose two slits, each of width a, are separated...Ch. 36.5 - What minimum number of slits would be required in...Ch. 36.6 - Prob. 36.6TYUCh. 36.7 - Prob. 36.7TYUCh. 36 - Why can we readily observe diffraction effects for...Ch. 36 - Prob. 36.2DQCh. 36 - You use a lens of diameter D and light of...
Ch. 36 - Light of wavelength and frequency f passes...Ch. 36 - In a diffraction experiment with waves of...Ch. 36 - An interference pattern is produced by four...Ch. 36 - Phasor Diagram for Eight Slits. An interference...Ch. 36 - A rainbow ordinarily shows a range of colors (see...Ch. 36 - Some loudspeaker horns for outdoor concerts (at...Ch. 36 - Figure 31.12 (Section 31.2) shows a loudspeaker...Ch. 36 - Prob. 36.11DQCh. 36 - With which color of light can the Hubble Space...Ch. 36 - At the end of Section 36.4, the following...Ch. 36 - Prob. 36.14DQCh. 36 - Why is a diffraction grating better than a...Ch. 36 - One sometimes sees rows of evenly spaced radio...Ch. 36 - Prob. 36.17DQCh. 36 - Prob. 36.18DQCh. 36 - Ordinary photographic film reverses black and...Ch. 36 - Monochromatic light from a distant source is...Ch. 36 - Parallel rays of green mercury light with a...Ch. 36 - Light of wavelength 585 nm falls on a slit 0.0666...Ch. 36 - Light of wavelength 633 nm from a distant source...Ch. 36 - Diffraction occurs for all types of waves,...Ch. 36 - CP Tsunami! On December 26, 2004, a violent...Ch. 36 - Prob. 36.7ECh. 36 - Monochromatic electromagnetic radiation with...Ch. 36 - Doorway Diffraction. Sound of frequency 1250 Hz...Ch. 36 - Figure 31.12 (Section 31.2) shows a loudspeaker...Ch. 36 - Red light of wavelength 633 nm from a helium neon...Ch. 36 - Public Radio station KXPR-FM in Sacramento...Ch. 36 - Monochromatic light of wavelength 580 nm passes...Ch. 36 - Monochromatic light of wavelength = 620 nm from a...Ch. 36 - A slit 0.240 mm wide is illuminated by parallel...Ch. 36 - Monochromatic light of wavelength 592 nm from a...Ch. 36 - A single-slit diffraction pattern is formed by...Ch. 36 - Parallel rays of monochromatic light with...Ch. 36 - Number of Fringes in a Diffraction Maximum. In...Ch. 36 - Diffraction and Interference Combined. Consider...Ch. 36 - An interference pattern is produced by light of...Ch. 36 - Laser light of wavelength 500.0 nm illuminates two...Ch. 36 - When laser light of wavelength 632.8 nm passes...Ch. 36 - Monochromatic light is at normal incidence on a...Ch. 36 - If a diffraction grating produces its third-order...Ch. 36 - If a diffraction grating produces a third-order...Ch. 36 - Visible light passes through a diffraction grating...Ch. 36 - The wavelength range of the visible spectrum is...Ch. 36 - (a) What is the wavelength of light that is...Ch. 36 - CDs and DVDs as Diffraction Gratings. A laser beam...Ch. 36 - A typical laboratory diffraction grating has 5.00 ...Ch. 36 - Identifying Isotopes by Spectra. Different...Ch. 36 - The light from an iron arc includes many different...Ch. 36 - If the planes of a crystal are 3.50 (1 = 1010 m...Ch. 36 - Prob. 36.35ECh. 36 - Monochromatic x rays are incident on a crystal for...Ch. 36 - Monochromatic light with wavelength 620 nm passes...Ch. 36 - Monochromatic light with wavelength 490 nm passes...Ch. 36 - Two satellites at an altitude of 1200 km are...Ch. 36 - BIO If you can read the bottom row of your doctors...Ch. 36 - The VLBA (Very Long Baseline Array) uses a number...Ch. 36 - Searching for Planets Around Other Stars. If an...Ch. 36 - Hubble Versus Arecibo. The Hubble Space Telescope...Ch. 36 - Photography. A wildlife photographer uses a...Ch. 36 - Observing Jupiter. You are asked to design a space...Ch. 36 - Coherent monochromatic light of wavelength passes...Ch. 36 - BIO Thickness of Human Hair. Although we have...Ch. 36 - CP A loudspeaker with a diaphragm that vibrates at...Ch. 36 - Laser light of wavelength 632.8 nm falls normally...Ch. 36 - Grating Design. Your boss asks you to design a...Ch. 36 - Measuring Refractive Index. A thin slit...Ch. 36 - Underwater Photography. An underwater camera has a...Ch. 36 - CALC The intensity of light in the Fraunhofer...Ch. 36 - A slit 0.360 mm wide is illuminated by parallel...Ch. 36 - CP CALC In a large vacuum chamber, monochromatic...Ch. 36 - CP In a laboratory, light from a particular...Ch. 36 - What is the longest wavelength that can be...Ch. 36 - It has been proposed to use an array of infrared...Ch. 36 - A diffraction grating has 650 slits/mm. What is...Ch. 36 - Quasars, an abbreviation for quasi-stellar radio...Ch. 36 - A glass sheet is covered by a very thin opaque...Ch. 36 - BIO Resolution of the Eye. The maximum resolution...Ch. 36 - DATA While researching the use of laser pointers,...Ch. 36 - DATA Your physics study partner tells you that the...Ch. 36 - DATA At the metal fabrication company where you...Ch. 36 - Intensity Pattern of N Slits. (a) Consider an...Ch. 36 - CALC Intensity Pattern of N Silts, Continued. Part...Ch. 36 - CALC It is possible to calculate the intensity in...Ch. 36 - Prob. 36.69PPCh. 36 - BRAGG REFLECTION ON A DIFFERENT SCALE. A colloid...Ch. 36 - Prob. 36.71PP
Additional Science Textbook Solutions
Find more solutions based on key concepts
A 45-kg skater rounds a 5.0-m-radius turn at 6.3 m/s. (a) What are the horizontal and vertical components of th...
Essential University Physics (3rd Edition)
Choose the best answer to each of the following. Explain your reasoning. The fact that we always see the same f...
The Cosmic Perspective Fundamentals (2nd Edition)
32. (II) Figure 4-53 [shows a block (mass mA) on a smooth horizontal surface, connected by a thin cord that pas...
Physics: Principles with Applications
Analyzing crystal diffraction is intimately tied to the various different geometries in which the atoms can be ...
Modern Physics
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
An ideal diatomic gas, in a cylinder with a movable piston, undergoes the rectangular cyclic process shown in F...
An Introduction to Thermal Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- To save money on making military aircraft invisible to radar, an inventor decides to coat them with a nonreflective material having an index of refraction of 1.20, which is between that of air and the surface of the plane. This, he reasons, should be much cheaper than designing Stealth bombers. (a) What thickness should the coating be to inhibit the reflection of 4.00-cm wavelength radar? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forwardFor 600-nm wavelength light and a slit separation of 0.12 mm, what are the angular positions of the first and third maxima in the double slit interference pattern?arrow_forwardFirst-order Bragg diffraction is observed at 23.8° relative to the crystal surface, with spacing between atoms of 0.24 nm. (a) At what angle will second order be observed? (b) What is the wavelength of the X-rays?arrow_forward
- A glass tube with an internal diameter ofd = 50 cm and wall thickness of t = 5 cm is filled with chemical liquid. When a He-Ne laser light beam perpendicularly passes through this glass tube, the 1o). Assume that the coefficient of absorption 0.01 cm-1. Compute the coefficient of absorption of the liquid inside the tube. exit light energy (intensity) decreases by half (Ie of the glass is 2agarrow_forwardA uniform plane wave is generated from a ham radio antenna on earth. The take off angle is 60 degrees (the angle ffrom ground going up is 60 deg). Using simple trigonometry the angle if incidence with the ionosphere would be 30 degrees. Assume the F layer of the ionosphere is 300 km above the earth. The wave frequency from the transmitter is 21 MHz. WIll this wave refract off the ionosphere and end up somewhere on earth? If yes, what is the distance it travels?arrow_forwardA thin sheet of transparent material has an index of refraction of 1.40 and is 15.0 µm thick. When it is inserted in the light path along one arm of an interferometer, how many fringe shifts occur in the pattern? Assume the wavelength (in a vac- uum) of the light used is 600 nm. Hint: The wavelength will change within the material.arrow_forward
- Different isotopes of the same element emit light at slightly different wavelengths. A wavelength in the emission spectrum of a hydrogen atom is 656.45 nm; for deuterium, the corresponding wavelength is 656.27 nm. (a) What minimum number of slits is required to resolve these two wavelengths in second order? (b) If the grating has 500.00 slits/mm, find the angles and angular separation of these two wavelengths in the second orderarrow_forwardA beam of light with wavelength of 1.00 µm and M2 = 20 is incident on an aperture of 1.5 mm diameter. a) Calculate the divergence angle of the beam in degrees (give the cone full-angle). b) Calculate the diameter of the beam at a distance of 10.00 m away from the aperture in the propagation direction in units of cm. c) It is given that the longitudinal (temporal) coherence length is 70 times the transverse (spatial) coherence length. Calculate the wavelength linewidth of the light in units of pm.aarrow_forwardIdentifying Isotopes by Spectra. Different isotopes of the same element emit light at slightly different wavelengths. A wavelength in the emission spectrum of a hydrogen atom is 656.45 nm; for deuterium, the corresponding wavelength is 656.27 nm. (a) What minimum number of slits is required to resolve these two wavelengths in second order? (b) If the grating has 500.00 slits/mm, find the angles and angular separation of these two wavelengths in the second order.arrow_forward
- . The velocity of light in the core of a step index fiber is 2.01 × 108 m s-1, and the critical angle at the core-cladding interface is 80°. Determine the numerical aperture and the acceptance angle for the fiber in air, assuming it has a core diameter suitable for consideration by ray analysis. The velocity of light in a vacuum is 2.998 x 103 m s-1arrow_forwardParameters of a Dielectric Waveguide. Light of free-space wavelength X, = 0.87 um is guided by a thin planar film of width d = 2 μm and refractive index n₁ = 1.6 surrounded by a medium of refractive index n₂ = 1.4. (a) Determine the critical angle 0, and its complement c, the numerical aperture NA, and the maximum acceptance angle for light originating in air (n = 1). (b) Determine the number of TE modes. (c) Determine the bounce angle and the group velocity v of the m= 0 TE mode.arrow_forwardThe walls of a soap bubble have about the same index ofrefractionas that of plain water, n = 1.33. There is air both insideand outside the bubble. (a) What wavelength (in air) of visible light ismost strongly reflected from a point on a soap bubble where its wall is290 nm thick? To what color does this correspond ? (b) Repeat part (a) for a wall thickness of 340 nm.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY