University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 36, Problem 36.7DQ
Phasor Diagram for Eight Slits. An interference pattern is produced by eight equally spaced narrow slits. The caption for Fig. 36.14 claims that minima occur for ϕ = 3π/4, π/4, 3π/2, and 7π/4. Draw the phasor diagram for each of these four cases, and explain why each diagram proves that there is in fact a minimum. In each case, for which pairs of slits is there totally destructive interference?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem 18: Consider a single slit that produces its first minimum at 54° for 590 nm light.
Randomized Variablesθ1 = 54 °θ1 = 54 °θ2 = 67 °λ1 = 590 nm
Part (a) What is the width of the single slit, w, in nanometers?Numeric : A numeric value is expected and not an expression.w = __________________________________________
Part (b) Find the wavelength, in nanometers, of light that has its first minimum at 67°.Numeric : A numeric value is expected and not an expression.λ2 = __________________________________________
Problem 1: In a double slit experiment the first minimum for 415 nm violet light is at an angle of 42°.
Randomized Variables
2 = 415 nm
e = 42 °
Find the distance between the two slits in micrometers.
d=
8 9
5 6
sin()
cos()
tan()
7
HOME
cotan()
asin()
acos()
E A 4
atan()
acotan()
sinh()
1
2
3
cosh()
tanh()
cotanh()
END
O Degrees O Radians
Vol BACKSPACE
DEL
CLEAR
+
Problem 17: Suppose a 1.8 μm wide slit produces its first minimum for 410 nm violet light.Randomized Variablesλv = 410 nmλv = 410 nmλr = 750 nmw = 1.8 μm
Part (a) Calculate the angle at which this occurs for violet light in degrees.Numeric : A numeric value is expected and not an expression.θv = __________________________________________Part (b) Where is the first minimum (in degrees) for 750 nm red light?Numeric : A numeric value is expected and not an expression.θr = __________________________________________
Chapter 36 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 36.1 - Can sound waves undergo diffraction around an...Ch. 36.2 - Rank the following single-slit diffraction...Ch. 36.3 - Coherent electromagnetic radiation is sent through...Ch. 36.4 - Suppose two slits, each of width a, are separated...Ch. 36.5 - What minimum number of slits would be required in...Ch. 36.6 - Prob. 36.6TYUCh. 36.7 - Prob. 36.7TYUCh. 36 - Why can we readily observe diffraction effects for...Ch. 36 - Prob. 36.2DQCh. 36 - You use a lens of diameter D and light of...
Ch. 36 - Light of wavelength and frequency f passes...Ch. 36 - In a diffraction experiment with waves of...Ch. 36 - An interference pattern is produced by four...Ch. 36 - Phasor Diagram for Eight Slits. An interference...Ch. 36 - A rainbow ordinarily shows a range of colors (see...Ch. 36 - Some loudspeaker horns for outdoor concerts (at...Ch. 36 - Figure 31.12 (Section 31.2) shows a loudspeaker...Ch. 36 - Prob. 36.11DQCh. 36 - With which color of light can the Hubble Space...Ch. 36 - At the end of Section 36.4, the following...Ch. 36 - Prob. 36.14DQCh. 36 - Why is a diffraction grating better than a...Ch. 36 - One sometimes sees rows of evenly spaced radio...Ch. 36 - Prob. 36.17DQCh. 36 - Prob. 36.18DQCh. 36 - Ordinary photographic film reverses black and...Ch. 36 - Monochromatic light from a distant source is...Ch. 36 - Parallel rays of green mercury light with a...Ch. 36 - Light of wavelength 585 nm falls on a slit 0.0666...Ch. 36 - Light of wavelength 633 nm from a distant source...Ch. 36 - Diffraction occurs for all types of waves,...Ch. 36 - CP Tsunami! On December 26, 2004, a violent...Ch. 36 - Prob. 36.7ECh. 36 - Monochromatic electromagnetic radiation with...Ch. 36 - Doorway Diffraction. Sound of frequency 1250 Hz...Ch. 36 - Figure 31.12 (Section 31.2) shows a loudspeaker...Ch. 36 - Red light of wavelength 633 nm from a helium neon...Ch. 36 - Public Radio station KXPR-FM in Sacramento...Ch. 36 - Monochromatic light of wavelength 580 nm passes...Ch. 36 - Monochromatic light of wavelength = 620 nm from a...Ch. 36 - A slit 0.240 mm wide is illuminated by parallel...Ch. 36 - Monochromatic light of wavelength 592 nm from a...Ch. 36 - A single-slit diffraction pattern is formed by...Ch. 36 - Parallel rays of monochromatic light with...Ch. 36 - Number of Fringes in a Diffraction Maximum. In...Ch. 36 - Diffraction and Interference Combined. Consider...Ch. 36 - An interference pattern is produced by light of...Ch. 36 - Laser light of wavelength 500.0 nm illuminates two...Ch. 36 - When laser light of wavelength 632.8 nm passes...Ch. 36 - Monochromatic light is at normal incidence on a...Ch. 36 - If a diffraction grating produces its third-order...Ch. 36 - If a diffraction grating produces a third-order...Ch. 36 - Visible light passes through a diffraction grating...Ch. 36 - The wavelength range of the visible spectrum is...Ch. 36 - (a) What is the wavelength of light that is...Ch. 36 - CDs and DVDs as Diffraction Gratings. A laser beam...Ch. 36 - A typical laboratory diffraction grating has 5.00 ...Ch. 36 - Identifying Isotopes by Spectra. Different...Ch. 36 - The light from an iron arc includes many different...Ch. 36 - If the planes of a crystal are 3.50 (1 = 1010 m...Ch. 36 - Prob. 36.35ECh. 36 - Monochromatic x rays are incident on a crystal for...Ch. 36 - Monochromatic light with wavelength 620 nm passes...Ch. 36 - Monochromatic light with wavelength 490 nm passes...Ch. 36 - Two satellites at an altitude of 1200 km are...Ch. 36 - BIO If you can read the bottom row of your doctors...Ch. 36 - The VLBA (Very Long Baseline Array) uses a number...Ch. 36 - Searching for Planets Around Other Stars. If an...Ch. 36 - Hubble Versus Arecibo. The Hubble Space Telescope...Ch. 36 - Photography. A wildlife photographer uses a...Ch. 36 - Observing Jupiter. You are asked to design a space...Ch. 36 - Coherent monochromatic light of wavelength passes...Ch. 36 - BIO Thickness of Human Hair. Although we have...Ch. 36 - CP A loudspeaker with a diaphragm that vibrates at...Ch. 36 - Laser light of wavelength 632.8 nm falls normally...Ch. 36 - Grating Design. Your boss asks you to design a...Ch. 36 - Measuring Refractive Index. A thin slit...Ch. 36 - Underwater Photography. An underwater camera has a...Ch. 36 - CALC The intensity of light in the Fraunhofer...Ch. 36 - A slit 0.360 mm wide is illuminated by parallel...Ch. 36 - CP CALC In a large vacuum chamber, monochromatic...Ch. 36 - CP In a laboratory, light from a particular...Ch. 36 - What is the longest wavelength that can be...Ch. 36 - It has been proposed to use an array of infrared...Ch. 36 - A diffraction grating has 650 slits/mm. What is...Ch. 36 - Quasars, an abbreviation for quasi-stellar radio...Ch. 36 - A glass sheet is covered by a very thin opaque...Ch. 36 - BIO Resolution of the Eye. The maximum resolution...Ch. 36 - DATA While researching the use of laser pointers,...Ch. 36 - DATA Your physics study partner tells you that the...Ch. 36 - DATA At the metal fabrication company where you...Ch. 36 - Intensity Pattern of N Slits. (a) Consider an...Ch. 36 - CALC Intensity Pattern of N Silts, Continued. Part...Ch. 36 - CALC It is possible to calculate the intensity in...Ch. 36 - Prob. 36.69PPCh. 36 - BRAGG REFLECTION ON A DIFFERENT SCALE. A colloid...Ch. 36 - Prob. 36.71PP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Which must be true if Mars was warmer and wetter in the past? (a) Mars was once closer to the Sun. (b) Mars onc...
Life in the Universe (4th Edition)
While reducing the mass of a racing bike, the greatest benefit is realized from reducing the mass of the tires ...
College Physics
An elastic towrope has spring constant 1300 N/m. Its connected between a truck and a 1900-kg car. As the truck ...
Essential University Physics: Volume 1 (3rd Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective
Choose the best answer to each of the following. Explain your reasoning. Based on current data, planetary syste...
Cosmic Perspective Fundamentals
Choose the best answer to each of the following. Explain your reasoning. Which of the following was not a major...
The Cosmic Perspective Fundamentals (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A hydrogen gas discharge lamp emits visible light at four wavelengths, =410 , 434, 486, and 656 nm. (a) If light from this lamp falls on a N slits separated by 0.025 mm, how far from the central maximum are the third maxima when viewed on a screen 2.0 m from the slits? (b) By what distance are the second and third maxima separated for l=486 nm?arrow_forwardWhat is the angular width of the central fringe of the interference pattern of (a) 20 slits separated by d=2.0103 mm? (b) 50 slits with the same separation? Assume that =600 nm.arrow_forwardIn Figure P37.18, let L = 120 cm and d = 0.250 cm. 0T he slits are illuminated with coherent 600-nm light. (Calculate the distance y from the central maximum for which the average intensity on the screen is 75.0% of the maximum.arrow_forward
- Coherent light rays of wavelength strike a pair of slits separated by distance d at an angle 1, with respect to the normal to the plane containing the slits as shown in Figure P27.14. The rays leaving the slits make an angle 2 with respect to the normal, and an interference maximum is formed by those rays on a screen that is a great distance from the slits. Show that the angle 2 is given by 2=sin1(sin1md) where m is an integer.arrow_forwardChapter 36, Problem 048 SN X Incorrect. A diffraction grating is made up of slits of width a with separation d. The grating is illuminated by monochromatic plane waves of wavelength A at normal incidence. What is the angular width of a spectral line observed in the first order if the grating has N slits? State your answer in terms of the given variables. (1) Editarrow_forwardChapter 36, Problem 048 SN A diffraction grating is made up of slits of width a with separation d. The grating is illuminated by monochromatic plane waves of wavelength A at normal incidence. What is the angular width of a spectral line observed in the first order if the grating has N slits? State your answer in terms of the given variables. A8w = ? Editarrow_forward
- The figure below shows the standard setup for Young's double-slit experiment. The spacing between the slits is d, and the screen is a distance L away from the slits. The derivation of the two-slit interference conditions assumes that the two lines of sight to a point P are parallel, since L>d, allowing us to approximate the path length difference as 42= dsıne. How 3.00 cm, d = 0.740 mm, and 0 = good is this approximation? Suppose that L = approximation for a case where L is closer to d.) 9.00°. (Under normal experimental conditions, L/d would be much larger than this, but we want to test the Use geometry and trigonometry to compute the value for the actual path length difference A2. Enter your answer as a positive value. 337.3 m Incorrect. Tries 2/100 Previous Tries Submit Answer By what percentage does this value differ from the approximation Al=dsint? (Enter your answer as a positive number, without the percent sign. Be sure to keep lots of digits in your calculations!) Submit Answer…arrow_forwardAn interference pattern is produced by eight equally spaced narrow slits. The caption for Fig. claims that minima occur for ϕ = 3π/4, π/4, 3π/2, and 7π/4. Draw the phasor diagram for each of these four cases, and explain why each diagram proves that there is in fact a minimum. In each case, for which pairs of slits is there totally destructive interference?arrow_forwardMonochromatic light of wavelength 4300 A.U. falls on slit of width a. For what value of a, the first maximum falls at 30°?arrow_forward
- Coherent microwave light with a frequency f= 2.0*1010 Hz is incident on a d=5.0 cm double slit barrier, producing an interference pattern of a number of maxima and minima. A detector is free to swing around the full 180 degrees in order to find the presence of intereference maxima and minima. How many different minima will this detector detect, as it is allowed to swing around the full 180 degrees? Include minima on both sides of the centerkine in your count.arrow_forwardcan you explain how the answer for the last question is 6.248966E-7?arrow_forwardA diffraction grating has 1550 slits/cm. How many full spectral orders can be seen (400 to 700 nm) when it is illuminated by white light? Express your answer as an integer. Find m.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY