Concept explainers
Light of wavelength 585 nm falls on a slit 0.0666 mm wide. (a) On a very large and distant screen, how many totally dark fringes (indicating complete cancellation) will there be. Including both sides of the central bright spot? Solve this problem without calculating all the angles! (Hint: What is the largest that sinθ can be? What does this tell you is the largest that m can be?) (b) At what angle will the dark fringe that is most distant from the central bright fringe occur?
Want to see the full answer?
Check out a sample textbook solutionChapter 36 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Additional Science Textbook Solutions
College Physics (10th Edition)
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Conceptual Integrated Science
Physics for Scientists and Engineers with Modern Physics
Modern Physics
University Physics (14th Edition)
- When a monochromatic light of wavelength 430 nm incident on a double slit of slit separation 5 m, there are 11 interference fringes in its central maximum. How many interference fringes will be in the central maximum of a light of wavelength 632.8 nm for the same double slit?arrow_forwardA hydrogen gas discharge lamp emits visible light at four wavelengths, =410 , 434, 486, and 656 nm. (a) If light from this lamp falls on a N slits separated by 0.025 mm, how far from the central maximum are the third maxima when viewed on a screen 2.0 m from the slits? (b) By what distance are the second and third maxima separated for l=486 nm?arrow_forwardFor 600-nm wavelength light and a slit separation of 0.12 mm, what are the angular positions of the first and third maxima in the double slit interference pattern?arrow_forward
- Monochromatic light of wavelength 530 nm passes through a horizontal single slit of width 1.5 m in an opaque plate. A screen of dimensions 2.0m2.0m is 1.2 m away from the slit. (a) Which way is the diffraction pattern spread out on the screen? (b) What are the angles of the minima with respect to the center? (c) What are the angles of the maxima? (d) How wide is the central bright fringe on the screen? (e) How wide is the next bright fringe on the screen?arrow_forwardTwo slits of width 2 m, each in an opaque material, are separated by a center-to-center distance of 6 m. A monochromatic light of wavelength 450 nm is incident on the double-slit. One finds a combined interference and diffraction pattern on the screen. (a) How many peaks of the interference will be observed in the central maximum of the diffraction pattern? (b) How many peaks of the interference will be observed if the slit width is doubled while keeping the distance between the slits same? (c) How many peaks of interference will be observed if the slits are separated by twice the distance, that is, 12 m, while keeping the widths of the slits same? (d) What will happen in (a) if instead of 450-nm light another light of wavelength 680 nm is used? (e) What is the value of the ratio of the intensity of the central peak to the intensity of the next bright peak in (a)? (f) Does this ratio depend on the wavelength of the light? (g) Does this ratio depend on the width or separation of the slits?arrow_forwardUsing the result of the problem two problems prior, find the wavelength of light that produces fringes 7.50 mm apart on a screen 2.00 m from double slits separated by 0.120 mm.arrow_forward
- Monochromatic light is incident on a pair of slits that are separated by 0.200 mm. The screen is 2.50 m away from the slits. a. If the distance between the central bright fringe and either of the adjacent bright fringes is 1.67 cm, find the wavelength of the incident light. b. At what angle does the next set of bright fringes appear?arrow_forward(a) An air wedge is formed between two glass plates separated at one edge by a very fine wire of circular cross section as shown in the figure below. When the wedge is illuminated from above by 600 nm light and viewed from above, 30 dark fringes are observed. Calculate the diameter d of the wire (in um). μm (b) What If? How many dark fringes will be observed if the gap between the glass plates is filled with water? dark fringes Need Help? Read It Master Itarrow_forward(a) Young's double-slit experiment is performed with 590-nm light and a distance of 2.00 m between the slits and the screen. The tenth interference minimum is observed 7.65 mm from the central maximum. Determine the spacing of the slits (in mm). mm (b) What If? What are the smallest and largest wavelengths of visible light that will also produce interference minima at this location? (Give your answers, in nm, to at least three significant figures. Assume the visible light spectrum ranges from 400 nm to 700 nm.) smallest wavelength largest wavelength Need Help? Read It Watch It nm nmarrow_forward
- Light of wavelength 588.2 nm illuminates a slit of width 0.63 mm. (a) At what distance from the slit should a screen be placed if the first minimum in the diffraction pattern is to be 0.86 mm from the central maximum? (b) Calculate the width of the central maximum. Step 1 (a) As shown in the figure, dark bands or minima occur where sin 0 = m(2/a). For the first minimum, m = 1 and the distance from the center of the central maximum to the first minimum is y₁ = L tan 8, where L is the distance of the viewing screen from the slit. 32 sin dark = 22/a 31 sin dark = λ/a HE 0 -1 sin dark = -λ/a -2 sin dark = -22/a Viewing screen a Because is very small, we can use the approximation tan sin 0 = m(2/a). Substituting the approximation and solving for the distance to the screen, we have 6.3 x 10 m ³ m ) (₁ L = = y ₁ ( ² ) = x 10-3 m x 10-⁹ m m.arrow_forward(a) Young's double-slit experiment is performed with 595-nm light and a distance of 2.00 m between the slits and the screen. The tenth interference minimum is observed 7.20 mm from the central maximum. Determine the spacing of the slits (in mm). mm (b) What If? What are the smallest and largest wavelengths of visible light that will also produce interference minima at this location? (Give your answers, in nm, to at least three significant figures. Assume the visible light spectrum ranges from 400 nm to 700 nm.) smallest wavelength nm largest wavelength nmarrow_forward(a) Young's double-slit experiment is performed with 510-nm light and a distance of 2.00 m between the slits and the screen. The tenth interference minimum is observed 7.35 mm from the central maximum. Determine the spacing of the slits (in mm). 1.318 mm (b) What If? What are the smallest and largest wavelengths of visible light that will also produce interference minima at this location? (Give your answers, in nm, to at least three significant figures. Assume the visible light spectrum ranges from 400 nm to 700 nm.) smallest wavelength nm largest wavelength nm Need Help? Watch It Read Itarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning