A car is parked on a steep incline, making an angle of 37.0° below the horizontal and overlooking the ocean, when its brakes fail and it begins to roll. Starting from rest at t = 0, the car rolls down the incline with a constant acceleration of 4.27 m/s², traveling 54.0 m to the edge of a vertical cliff. The cliff is 30.0 m above the ocean. (a) Find the speed of the car when it reaches the edge of the cliff. m/s (b) Find the time interval elapsed when it arrives there. S (c) Find the velocity of the car when it lands in the ocean. magnitude direction m/s ° below the horizontal (d) Find the total time interval the car is in motion. S (e) Find the position of the car when it lands in the ocean, relative to the base of the cliff. m

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter2: Motion In One Dimension
Section: Chapter Questions
Problem 7OQ: A student at the top of a building of height h throws one ball upward with a speed of vi and then...
icon
Related questions
Question
100%

No chatgpt pls will upvote 

A car is parked on a steep incline, making an angle of 37.0° below the horizontal and overlooking the ocean, when its brakes fail and it begins to roll. Starting from rest at t = 0, the car rolls down the incline with a constant acceleration of 4.27 m/s², traveling 54.0 m to the edge of a
vertical cliff. The cliff is 30.0 m above the ocean.
(a) Find the speed of the car when it reaches the edge of the cliff.
m/s
(b) Find the time interval elapsed when it arrives there.
S
(c) Find the velocity of the car when it lands in the ocean.
magnitude
direction
m/s
° below the horizontal
(d) Find the total time interval the car is in motion.
S
(e) Find the position of the car when it lands in the ocean, relative to the base of the cliff.
m
Transcribed Image Text:A car is parked on a steep incline, making an angle of 37.0° below the horizontal and overlooking the ocean, when its brakes fail and it begins to roll. Starting from rest at t = 0, the car rolls down the incline with a constant acceleration of 4.27 m/s², traveling 54.0 m to the edge of a vertical cliff. The cliff is 30.0 m above the ocean. (a) Find the speed of the car when it reaches the edge of the cliff. m/s (b) Find the time interval elapsed when it arrives there. S (c) Find the velocity of the car when it lands in the ocean. magnitude direction m/s ° below the horizontal (d) Find the total time interval the car is in motion. S (e) Find the position of the car when it lands in the ocean, relative to the base of the cliff. m
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Glencoe Physics: Principles and Problems, Student…
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning