Concept explainers
(a)
Interpretation: TheLewis structure of
Concept Introduction:
Lewis dot structure is the representation which shows the bonding between atoms present in a molecule. It shows lone pairs and bond pairs that existing on each bonded atom.
Lewis dot structure is also known as Lewis dot formula or electron dot structure. The bond formation between the atoms takes place due to the sharing of valence electrons of bonded atoms while the remaining electrons present in outer shell represented as lone pair of electrons. To draw the Lewis structure, calculate the total number of valence electrons in each atom and draw the structure in such a way that each atom gets its octet configuration. The formula for the formal charge can be written as:
(b)
Interpretation: The resonance structures of
Concept Introduction:
Lewis dot structure is the representation which shows the bonding between atoms present in a molecule. It shows lone pairs and bond pairs that existing on each bonded atom.
Lewis dot structure is also known as Lewis dot formula or electron dot structure. The bond formation between the atoms takes place due to the sharing of valence electrons of bonded atoms while the remaining electrons present in outer shell represented as lone pair of electrons. To draw the Lewis structure, calculate the total number of valence electrons in each atom and draw the structure in such a way that each atom gets its octet configuration. The formula for the formal charge can be written as:
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Principles of Modern Chemistry
- The two compounds nitrogen dioxide and dinitrogentetraoxide are introduced in Section 3.13.(a) NO2 is an odd-electron compound. Draw the bestLewis diagrams possible for it, recognizing that oneatom cannot achieve an octet configuration. Use formal charges to decide whether that should be the(central) nitrogen atom or one of the oxygen atoms.(b) Draw resonance forms for N2O4 that obey the octetrule. The two N atoms are bonded in this molecule.arrow_forward(1) What is the total number of valence electrons in the Lewis structure of SF2? electrons (2) Draw a Lewis structure for SF2arrow_forwardConsider the formate ion, HCO2", which is the anion formed when formic acid loses an H* ion. The H and the two O atoms are bonded to the central C atom. (a) Draw the best Lewis structure(s) for this ion. (b) Are resonance structures needed to describe the structure? Explain briefly (c) Would you predict that the C-O bond lengths in the formate ion would be longer or shorter relative to those in CO2? Explain brieflyarrow_forward
- Consider the following compounds: CaCl 2 , CaI 2 , and MgCl 2 . Answer the following questions based on expected periodic trends: (a) Which is expected to have t he shortest ionic bonds? (b) Which is expected to have the highest lattice energy? (c) Which is expected to have the lowest melting point?arrow_forwardTwo substances with empirical formula HNO are hyponi-trous acid ( μ=62.04 g /mol) and nitroxyl (μ=31.02 g/mol).(a) What is the molecular formula of each species?(b) For each species, draw the Lewis structure having the lowestformal charges. (Hint:Hyponitrous acid has an N=N bond.)(c) Predict the shape around the N atoms of each species.(d) When hyponitrous acid loses two protons, it forms the hy-ponitrite ion. Draw cisand transforms of this ion.arrow_forward3) The molecule diphosphorus tetraoxide (P,O,) has two central atoms and four different resonance structures that do not violate the octet rule. Draw two of these resonance structures below. 4) The compound acetone is a common solvent. It has a chemical formula of CH,COCH, Acetone has three central atoms. (a) Draw the Lewis Dot structure for acetone. (b) Give the Ideal Bond Angle for all three central atoms. 5) Four covalent molecules are drawn below. :o: H. H-CH H H (1) (2) (3) (4) a) Define each of these molecules as polar or non-polar. (1) (2) (3) b) Describe the type of intermolecular force that each molecule would use: (1) (2) (3) (4)arrow_forward
- In the vapor phase, BeCl2 exists as a discrete molecule. (a) Draw the Lewis structure of this molecule, using only single bonds. Does this Lewis structure satisfy the octet rule? (b) What other resonance structures are possible that satisfy the octet rule? (c) On the basis of the formal charges, which Lewis structure is expected to be dominant for BeCl2?arrow_forward2arrow_forward19. :O: || :0-N- O: Which of the following statements, if true, would support the claim that the NO3 ion, represented above, has three resonance structures? (A) The NO3 ion is not a polar species. (B) The oxygen-to-nitrogen-to-oxygen bond angles are 90°. (C) One of the bonds in NO3 is longer than the other two. (D) One of the bonds in NO3¯ is shorter than the other two.arrow_forward
- Draw Lewis structures for HFO4, HFO3, HC0O4, HC0O3, HCO2. (These molecules have the halogen atom as the central atom. All O atoms are attached to the halogen. The hydrogen atom is bonded to one of the O atoms.) Use formal charges to determine which molecule is least likely to occur in nature. (A) HFO4 (B) HC(O2 (C) HC!O3 (D) HFO3 (E) HC\O4 DO000arrow_forwardWhich of the following bonds are polar: (a) P—O; (b) S—F; (c) Br—Br; (d) O—Cl? Which is the more electronegative atom in each polar bond?arrow_forwardConsider the following compounds: BeCl 2 , MgBr 2 , and SrBr 2 . Answer the following questions based on expected periodic trends: (a) Which is expected to have the shortest ionic bonds? (b) Which is expected to have the highest lattice energy? (c) Which is expected to have the lowest melting point?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning