Concept explainers
(a)
Interpretation:
The element that has a high
Concept Introduction:
The amount of energy required to add an electron to the atom to form negative ion is known as electron affinity. The factors affecting electron affinity are shown below:
- It is inversely proportional to the size of an atom.
- It is directly proportional to the effective nuclear charge.
- It is inversely proportional to the stable electronic configuration.
(b)
Interpretation:
The element that has a high electron affinity from I and Rn should be predicted.
Concept Introduction:
The amount of energy required to add an electron to the atom to form negative ion is known as electron affinity. The factors affecting electron affinity are shown below:
- It is inversely proportional to the size of an atom.
- It is directly proportional to the effective nuclear charge.
- It is inversely proportional to the stable electronic configuration.
(c)
Interpretation:
The element that has a high electron affinity from Ba and Te should be predicted.
Concept Introduction:
The amount of energy required to add an electron to the atom to form negative ion is known as electron affinity. The factors affecting electron affinity are shown below:
- It is inversely proportional to the size of an atom.
- It is directly proportional to the effective nuclear charge.
- It is inversely proportional to the stable electronic configuration.
(d)
Interpretation:
The element that has a high electron affinity from Bi and Cl should be predicted.
Concept Introduction:
The amount of energy required to add an electron to the atom to form negative ion is known as electron affinity. The factors affecting electron affinity are shown below:
- It is inversely proportional to the size of an atom.
- It is directly proportional to the effective nuclear charge.
- It is inversely proportional to the stable electronic configuration.
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Principles of Modern Chemistry
- Boron, atomic number 5, occurs naturally as two isotopes, 10B and 11B, with natural abundances of 19.9% and 80.1%, respectively.(a) In what ways do the two isotopes differ from each other? Does the electronic configuration of 10B differ from that of 11B? (b) Drawthe orbital diagram for an atom of 11B. Which electrons are the valence electrons? (c) Indicate three ways in which the 1s electrons inboron differ from its 2s electrons. (d) Elemental boron reacts with fluorine to form BF3, a gas. Write a balanced chemical equation forthe reaction of solid boron with fluorine gas. (e) ΔHf° for BF31g2 is -1135.6 kJ>mol. Calculate the standard enthalpy change in thereaction of boron with fluorine. (f) Will the mass percentage of F be the same in 10BF3 and 11BF3? If not, why is that the case?arrow_forwardBoron, atomic number 5, occurs naturally as two isotopes, 10B and 11B, with natural abundances of 19.9% and 80.1%, respectively. (a) In what ways do the two isotopes differ from each other? Does the electronic configuration of 10B differ from that of 11B? (b) Draw the orbital diagram for an atom of 11B. Which electrons are the valence electrons? (c) Indicate three ways in which the 1s electrons in boron differ from its 2s electrons. (d) Elemental boron reacts with fluorine to form BF3, a gas. Write a balanced chemical equation for the reaction of solid boron with fluorine gas. (e) ΔHf° for BF3(g) is -1135.6 kj/mol. Calculate the standard enthalpy change in the reaction of boron with fluorine. (f) Will the mass percentage of F be the same in 10BF3 and 11BF3? If not, why is that the case?arrow_forwardFor two adjacent ions, the net potential energy is: А В + rn EN - - r where A, B and n are constants, r is in nm and E is in eV. (a) Find the expression for the bonding energy Eg in terms of A, B and n. (b) For two pairs of ions, with A = 1.436, B = 5.86 x 106 and n = 9, solve for ro and Eg.arrow_forward
- When a nonmetal oxide reacts with water, it forms an oxoacid with the same oxidation number as the nonmetal. Give the name and formula of the oxide used to prepare each of these oxoacids: (a) hypochlorous acid; (b) chlorous acid; (c) chloric acid; (d) perchloric acid; (e) sulfuric acid; (f ) sulfurous acid; (g) nitric acid; (h) nitrous acid; (i) carbonic acid; ( j) phosphoric acid.arrow_forwardFor each of the following pairs of atoms, state which youexpect to have the higher first ionization energy: (a) Rb orSr; (b) Po or Rn; (c) Xe or Cs; (d) Ba or Sr.arrow_forward5.) Electron Configurations for Ions: Supply the ground state electron configurations for the following ions. You many use the short-hand notation (e.g. Na*: [He]2s 2p°). (a) N (b) Mg*. (c) O (d) Sc* (e) Sn2+ (f) Ar 6.) Formulas of Ions: Predict the formulas of the most stable ions of the following elements (a) Na (b) Mg (c) S (d) Al (e) Br (f) Parrow_forward
- The bars in the graph at right represent the relative magnitudes of the first five ionization energies of an atom. Identify the element and write its complete electron configuration, assuming it comes from (a) Period 2; (b) Period 3; (c) Period 4.arrow_forwardNa +, K +, Ca 2 +, and Mg 2 + are the four major cations in the body. For each cation, give the following information: (a) the number of protons; (b) the number of electrons; (c) the noble gas that has the same electronic confi guration; (d) its role in the body.arrow_forward7. Which element has the smallest first ionization energy? (a) Cs (b) Ga (c) K (d) Bi (e) As 8. Which element has the smallest second ionization energy? (a) Mg (b) Li (c) S (d) O (e) Ca 9. Which of the following sets contain all linear molecules? (a) H2S, HCN, CO2. (b) HCN, O2, CO2 (c) H2O, CO, Cl2. (d) H2S, CO, CO2. (e) BF3, Cl2, O2 10. The molecular geometry of SnCl3-ion is: (a) trigonal planar (b) T-shaped. (c) trigonal pyramidal. (d) Tetrahedral (e) see-saw 11. The geometry of the molecule SPC13 is best described as: (a) square planar (b) trigonal pyramidal (c) trigonal bipyramidal. (d) octahedral (e) tetrahedral 12. The O-S-Cl bond angles in O2SCl2 are expected to be approximately: (a) 90° (b) 109.5° (c) 120° (d)180 ° (e) 90° and 120°arrow_forward
- What kind of bonds will be formed between the element with the electronic structure (a) 1s22s22p5 and the element with the electronic structure 1s22s1; (b) between the element with the electronic structure 1s22s22p2 and the element with the electronic structure 1s1; (c) between two atoms with the electronic structure 1s22s22p6 ? In each case, briefly explain.arrow_forwardWhen a nonmetal oxide reacts with water, it forms anoxoacid with the same nonmetal oxidation state. Give the name and formula of the oxide used to prepare each of these oxoacids:(a) hypochlorous acid; (b) chlorous acid; (c) chloric acid; (d) perchloric acid; (e) sulfuric acid; (f ) sulfurous acid; (g) nitricacid; (h) nitrous acid; (i) carbonic acid; ( j) phosphoric acid.arrow_forward(a) Use orbital diagrams to illustrate what happens when anoxygen atom gains two electrons. (b) Why does O3 - not exist?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY