Principles of Modern Chemistry
8th Edition
ISBN: 9781305079113
Author: David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 11P
Use the data in Table 3.1 to plot the logarithm of ionization energy versus the number of electrons removed for Be. Describe the electronic structure of the Be atom.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Atoms of Group 1 elements have the lowest first ionization energy of all the elements on the periodic table but subsequently have the largest increase between the first and second ionization energy that any other elements have. Explain why this is the case, based on the electronic structure of the atoms/ions.
For each valence electron in Magnesium, state the set of quantum numbers that describes that electron.
If we say that electrons travel around the nucleus of an atom in rings or shells, we can assign that ring a limit on how many electrons they can carry. We say that the ring that surrounds the nucleus has room for 2 electrons, then each ring after that has room for 8 electrons. The outer most ring is called the valence ring or valance shell and may or may not be full. Realistically, this might not be the most accurate way to diagramming electron distribution, but it helps us to see why they are where they are on the table and why they bond the way that they do. It also helps us establish the Group number at the top of each column.
Let’s look at Carbon (C) – Given that C has an atomic number of 6:
How many protons does it have? D
How many electrons does it have? E
How many are in the first ring? F Second ring? G
Draw the number of electrons around each of these elements on your periodic table.
What…
Chapter 3 Solutions
Principles of Modern Chemistry
Ch. 3 - Before the element scandium was discovered in...Ch. 3 - Prob. 2PCh. 3 - Prob. 3PCh. 3 - Prob. 4PCh. 3 - Prob. 5PCh. 3 - A gold nucleus is located at the origin of...Ch. 3 - Prob. 7PCh. 3 - A gold nucleus is located at the origin of...Ch. 3 - Prob. 9PCh. 3 - Prob. 10P
Ch. 3 - Use the data in Table 3.1 to plot the logarithm of...Ch. 3 - Use the data in Table 3.1 to plot the logarithm of...Ch. 3 - Prob. 13PCh. 3 - Prob. 14PCh. 3 - Prob. 15PCh. 3 - Prob. 16PCh. 3 - Prob. 17PCh. 3 - Prob. 18PCh. 3 - HF has equilibrium bond length of 0.926 A and bond...Ch. 3 - Prob. 20PCh. 3 - For each of the following atoms or ions, state the...Ch. 3 - Prob. 22PCh. 3 - Use the data in Figure 3.11 and Table 3.2 to...Ch. 3 - Use the data in Figure 3.11 and Table 3.2 to...Ch. 3 - Prob. 25PCh. 3 - In a gaseous RbF molecule, the bond length is...Ch. 3 - The bond lengths of the XH bonds in NH3,PH3 , and...Ch. 3 - Arrange the following covalent diatomic molecules...Ch. 3 - The bond length in HI(1.62) is close to the sum of...Ch. 3 - Prob. 30PCh. 3 - Use electronegativity values to arrange the...Ch. 3 - Use electronegativity values to rank the bonds in...Ch. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Estimate the percent ionic character of the bond...Ch. 3 - The percent ionic character of a bond can be...Ch. 3 - The percent ionic character of the bonds in...Ch. 3 - Assign formal charges to all atoms in the...Ch. 3 - Assign formal charges to all atoms in the...Ch. 3 - Determine the formal charges on all the atoms in...Ch. 3 - the formal charges on all the atoms in the...Ch. 3 - Prob. 43PCh. 3 - In each of the following Lewis diagrams, Z...Ch. 3 - Draw Lewis electron dot diagrams for the following...Ch. 3 - Prob. 46PCh. 3 - Prob. 47PCh. 3 - Acetic acid is the active ingredient of vinegar....Ch. 3 - Under certain conditions, the stable form of...Ch. 3 - White phosphorus (P4) consists of four phosphorus...Ch. 3 - Draw Lewis electron dot diagrams for the following...Ch. 3 - Draw Lewis electron dot diagrams for the following...Ch. 3 - Draw Lewis diagrams for the two resonance forms of...Ch. 3 - Draw Lewis diagrams for the three resonance forms...Ch. 3 - Methyl isocyanate, which was involved in the...Ch. 3 - Prob. 56PCh. 3 - Draw Lewis diagrams for the following compounds....Ch. 3 - Draw Lewis diagrams for the following ions. In the...Ch. 3 - Prob. 59PCh. 3 - Prob. 60PCh. 3 - For each of the following molecules or molecular...Ch. 3 - For each of the following molecules or molecular...Ch. 3 - Give an example of a molecule or ion having a...Ch. 3 - Give an example of a molecule or ion having a...Ch. 3 - For each of the answers in Problem 59, state...Ch. 3 - For each of the answers in Problem 60, state...Ch. 3 - Prob. 67PCh. 3 - Mixing SbCl3 and GaCl3 in a 1:1 molar ratio (using...Ch. 3 - (a) Use the VSEPR theory to predict the structure...Ch. 3 - Ozone (O3) has a nonzero dipole moment. In the...Ch. 3 - Assign oxidation numbers to the atoms in each of...Ch. 3 - Prob. 72PCh. 3 - Prob. 73PCh. 3 - Prob. 74PCh. 3 - Prob. 75PCh. 3 - Prob. 76PCh. 3 - Prob. 77PCh. 3 - Prob. 78PCh. 3 - Prob. 79PCh. 3 - Prob. 80PCh. 3 - Prob. 81PCh. 3 - Prob. 82PCh. 3 - Prob. 83PCh. 3 - Prob. 84PCh. 3 - Prob. 85APCh. 3 - Prob. 86APCh. 3 - At large interatomic separations, an alkali halide...Ch. 3 - Prob. 88APCh. 3 - Prob. 89APCh. 3 - Two possible Lewis diagrams for sulfine (H2CSO)...Ch. 3 - There is persuasive evidence for the brief...Ch. 3 - The compound SF3N has been synthesized. (a) Draw...Ch. 3 - Prob. 93APCh. 3 - The molecular ion S3N3 has the cyclic structure...Ch. 3 - Prob. 95APCh. 3 - Prob. 96APCh. 3 - Prob. 97APCh. 3 - Prob. 98APCh. 3 - A stable triatomic molecule can be formed that...Ch. 3 - The gaseous potassium chloride molecule has a...Ch. 3 - (a) Predict the geometry of the SbCl52 ion, using...Ch. 3 - Prob. 102APCh. 3 - Predict the arrangement of the atoms about the...Ch. 3 - Prob. 104APCh. 3 - Prob. 105APCh. 3 - Prob. 106APCh. 3 - Prob. 107APCh. 3 - Prob. 108APCh. 3 - (a) Determine the oxidation number of lead in each...Ch. 3 - Prob. 110APCh. 3 - Prob. 111CPCh. 3 - Prob. 112CPCh. 3 - A compound is being tested for use as a rocket...Ch. 3 - Prob. 114CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Suppose that the spin quantum number did not exist, and therefore only one electron could occupy each orbital of a many-electron atom. Give the atomic numbers of the first three noble-gas atoms in this case.arrow_forwardBoth the electron affinity and the ionization energy of chlorine are higher than the corresponding quantities for sulfur. Explain why in terms of the electronic structure of the atoms.arrow_forwardDo atoms in excited states emit radiation randomly, at any wavelength? Why? What does it mean to say that the hydrogen atom has only certain discrete energy levels available? How do we know this? Why was the quantization of energy levels surprising to scientists when it was first discovered?arrow_forward
- Section 11.6 uses a "firefly" analogy to illustrate how the wave mechanical modal for the atom differs from Bohr’s. model. Explain this analogy.arrow_forwardAre mathematical expressions for the following potential energies positive or negative? Explain why in each case. a The attraction between an electron and a helium nucleus b The repulsion between two protons in a nucleus c The attraction between a north and a south magnetic pole d The force of gravity between the Sun and Earth e A rock perched on the edge of a cliff with respect to the base of the cliffarrow_forwardPhotoelectron spectroscopy studies of silicon atoms excited by X-rays with wavelength 9.8901010m show four peaks in which the electrons have speeds 2.097107ms1,2.093107ms1,2.014107ms1, and 1.971107ms1 . (Recall that 1J=1kgm2s2 .) (a) Calculate the ionization energy of the electrons in each peak. (b) Assign each peak to an orbital of the silicon atom.arrow_forward
- Type in electron configurations for the following atoms and ions. Use the noble gas shortcut. The answer boxes don't support special formatting like superscripts, so I've programmed the answers as follows. As an example, the electron config for carbon would usually be: [He]2s°2p? But the ansvwer box can't hold superscripts, so type it in with spaces between each orbital and the next, like so: [He] 2s2 2p2 Can -- what you - - A ATA typed and what Ti (Ar] 3d2 4s2 Co [Ar] 3d7 4s2 Y2+ [Kr] 4d1 Bi3+ [Xe]6s2 4f14 5d10arrow_forwardplease answer with explanation with example plz , explanation is must , i will upvote , do all three very easy , do not give incomplete answer plz .arrow_forwardHow many valence electrons do each of the following atoms have: Sr, Se? Briefly describe your rationale.arrow_forward
- Chapter 9 quiz - WaveBrowser session.mastering chemistry.com/myct/assignmentPrintView?assignmentID=11039072 • According to Hund's rule, when orbitals of identical energy are available, these are first occupied singly with parallel spins rather than in pairs. Part A Use the orbital-filling diagram to show the electron configuration of phosphorus, P Be sure to label the subshells in order of energy, with the lowest-energy subshell at the bottom and the highest-energy subshell at the top. Drag the appropriate labels to their respective targets. Not all targets will be filled. You did not open hints for this part. ANSWER: 11 1s 2s 2p 3s 3p 3d 4s 4p Type here to search E G1 G2 G2 G2 G2 G2 240 90 G1 GI GI G1 3 G1 G1 G1 G1 G1 G1 O AI at Reset Help Ch W 5 6 A✓00 Perce & 7 8 home SARAA 9 flo endarrow_forwardPauli exclusion principle specifies that each (1) can hold (2) two electrons, which must have (3) spins. (1) = electron state, (2) = more than, (3) = opposite. (1) = subshell, (2) = more than, (3) = the same. (1) = electron state, (2) = no more than, (3) = opposite. (1) = subshell, (2) = no more than, (3) = opposite.arrow_forwardWrite the ground state electron configurations of the following ions. Te2- Al3+ Ba2+ F -arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Periodic Properties of Elements | Chemistry | IIT-JEE | NEET | CBSE | Misostudy; Author: Misostudy;https://www.youtube.com/watch?v=L26rRWz4_AI;License: Standard YouTube License, CC-BY
Periodic Trends: Electronegativity, Ionization Energy, Atomic Radius - TUTOR HOTLINE; Author: Melissa Maribel;https://www.youtube.com/watch?v=0h8q1GIQ-H4;License: Standard YouTube License, CC-BY